Patents by Inventor Andrew Timothy Patten

Andrew Timothy Patten has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7938021
    Abstract: A compact vibratory flowmeter (200) for measuring flow characteristics of a cement flow material at a cement flow material pressure of greater than about 10 pounds-per-square-inch (psi) is provided according to an embodiment of the invention. The compact vibratory flowmeter (200) includes at least two pickoff sensors (308) and a driver (309). The compact vibratory flowmeter (200) further includes one or more flow conduits (301). The at least two pickoff sensors (308) are affixed to the one or more flow conduits (301) and the driver (309) is configured to vibrate the one or more flow conduits (301). The one or more flow conduits (301) include a drive frequency that is less than about 200 Hertz (Hz) and a frequency ratio of the drive frequency to a fluid resonant frequency of the cement flow material that is less than about 0.8.
    Type: Grant
    Filed: April 6, 2005
    Date of Patent: May 10, 2011
    Assignee: Micro Motion, Inc.
    Inventors: Anthony William Pankratz, Mark James Bell, Andrew Timothy Patten
  • Publication number: 20110029259
    Abstract: A method for detecting a deviation in a flow meter parameter of a flow meter that is adapted to measure a fluid flow rate is provided. The method comprises measuring a differential pressure across at least a portion of the flow meter. The method further comprises comparing the measured differential pressure to an expected differential pressure; the expected differential pressure being based on the measured flow rate. The method further comprises detecting a deviation in the flow meter parameter if the difference between the measured differential pressure and the expected differential pressure exceeds a threshold limit.
    Type: Application
    Filed: May 1, 2008
    Publication date: February 3, 2011
    Applicant: MICRO MOTION INC.
    Inventors: Timothy J Cunningham, Andrew Timothy Patten
  • Patent number: 7865318
    Abstract: Meter electronics (20) for a flow meter (5) is provided according to an embodiment of the invention. The meter electronics (20) includes an interface (201) for receiving a vibrational response from the flow meter (5) and a processing system (203) in communication with the interface (201). The vibrational response is a response to a vibration of the flow meter (5) at a substantially resonant frequency. The processing system (203) is configured to receive the vibrational response from the interface (201), determine a frequency (?0) of the vibrational response, determine a response voltage (V) and a drive current (I) of the vibrational response, measure a decay characteristic (?) of the flow meter (5), and determine the stiffness parameter (K) from the frequency (?0), the response voltage (V), the drive current (I), and the decay characteristic (?).
    Type: Grant
    Filed: September 19, 2005
    Date of Patent: January 4, 2011
    Assignee: Micro Motion, Inc.
    Inventors: Matthew Joseph Rensing, Andrew Timothy Patten, Timothy J. Cunningham, Mark James Bell
  • Patent number: 7827844
    Abstract: A method and apparatus for validating the flow calibration factor of a Coriolis flowmeter. In accordance with a first embodiment, an improved material density is obtained by measuring material density when the temperature of the material is equal to a predetermined reference temperature. In accordance with a second embodiment, a preprogrammed data base stores density/temperature relationships. Improved density information is obtained by measuring the density and temperature of the material, applying the measured density/temperature information from the data base, and obtaining density information compensated for a predetermined reference temperature. The improved density information obtained for both embodiments is unaffected by temperature changes and is used to validate the flow calibration factor. The flow calibration factor compensation for pressure changes and changes in material composition is obtained in a similar manner.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: November 9, 2010
    Assignee: Micro Motion, Inc.
    Inventors: Andrew Timothy Patten, Graeme Ralph Duffill
  • Patent number: 7831400
    Abstract: A system for calculating a flow rate of a flow meter using multiple modes is provided according to an embodiment of the invention. The system for calculating a flow rate of a flow meter using multiple modes comprises a means for calibrating the flow meter for a number of desired modes. The system for calculating a flow rate of a flow meter using multiple modes includes a means for determining a density of a material flowing through the flow meter associated with each mode. The system for calculating a flow rate of a flow meter using multiple modes further includes a means for determining the flow rate effect on density for each desired mode. The system for calculating a flow rate of a flow meter using multiple modes a means for calculating a flow rate based on the density and flow rate effect on density values for each desired mode.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: November 9, 2010
    Assignee: Micro Motion, Inc.
    Inventors: Charles Paul Stack, Andrew Timothy Patten, Marc Allan Buttler, Graeme Ralph Duffill
  • Patent number: 7802484
    Abstract: A compact vibratory flowmeter (200) for measuring flow characteristics of a multi-phase flow material at a flow material pressure of greater than about 10 pounds-per-square-inch (psi) is provided according to an embodiment of the invention. The compact vibratory flowmeter (200) includes one or more flow conduits (301), at least two pickoff sensors (308), and a driver (309). The compact vibratory flowmeter (200) further includes a maximum water drive frequency in the one or more flow conduits (301) that is less than about 250 Hertz (Hz) and an aspect ratio (L/H) of the one or more flow conduits (301) that is greater than about 2.5. A height-to-bore ratio (H/B) of the one or more flow conduits (301) is less than about 10 and a bowed flow conduit geometry includes end bend angles ? of between about 120 degrees and about 170 degrees.
    Type: Grant
    Filed: April 6, 2005
    Date of Patent: September 28, 2010
    Assignee: Micro Motion, Inc.
    Inventors: Anthony William Pankratz, Mark James Bell, Andrew Timothy Patten
  • Publication number: 20100198531
    Abstract: A vibratory flow meter (5) for measuring flow characteristics of a three phase flow is provided according to the invention. The vibratory flow meter (5) includes a meter assembly (10) including pickoff sensors (105, 105?) and meter electronics (20) coupled to the pickoff sensors (105, 105?). The meter electronics (20) is configured to receive a vibrational response from the pickoff sensors (105, 105), generate a first density measurement of the three phase flow using a first frequency component of the vibrational response, and generate at least a second density measurement of the three phase flow using at least a second frequency component of the vibrational response. The at least second frequency component is a different frequency than the first frequency component. The meter electronics (20) is further configured to determine one or more flow characteristics from the first density measurement and the at least second density measurement.
    Type: Application
    Filed: July 30, 2007
    Publication date: August 5, 2010
    Applicant: Micro Motion, Inc
    Inventors: Mark James Bell, Craig B. McAnally, Richard L. St. Pierre, JR., Andrew Timothy Patten
  • Publication number: 20100175456
    Abstract: A multiple flow conduit flow meter (200) is provided according to an embodiment of the invention. The multiple flow conduit flow meter (200) includes a first flow conduit (201) conducting a first flow stream and a pair of first pickoff sensors (215, 215) affixed to the first flow conduit (201). The multiple flow conduit flow meter (200) further includes at least one additional flow conduit (202) conducting at least one additional flow stream and at least one pair of additional pickoff sensors (216, 216?) affixed to the at least one additional flow conduit (202). The at least one additional flow stream is independent of the first flow stream. The multiple flow conduit flow meter (200) further includes a common driver (220) configured to vibrate both the first flow conduit (201) and the at least one additional flow conduit (202) in order to generate a first vibrational response and at least one additional vibrational response.
    Type: Application
    Filed: August 24, 2006
    Publication date: July 15, 2010
    Applicant: Micro Motion, Inc.
    Inventors: Charles Paul Stack, Andrew Timothy Patten, Gregory Treat Lanham, Mark James Bell
  • Publication number: 20100154563
    Abstract: A compact vibratory flowmeter (200) for measuring flow characteristics of a cement flow material at a cement flow material pressure of greater than about 10 pounds-per-square-inch (psi) is provided according to an embodiment of the invention. The compact vibratory flowmeter (200) includes at least two pickoff sensors (308) and a driver (309). The compact vibratory flowmeter (200) further includes one or more flow conduits (301). The at least two pickoff sensors (308) are affixed to the one or more flow conduits (301) and the driver (309) is configured to vibrate the one or more flow conduits (301). The one or more flow conduits (301) include a drive frequency that is less than about 200 Hertz (Hz) and a frequency ratio of the drive frequency to a fluid resonant frequency of the cement flow material that is less than about 0.8.
    Type: Application
    Filed: April 6, 2005
    Publication date: June 24, 2010
    Applicant: MICRO MOTION, INC.
    Inventors: Anthony William Pankratz, Mark James Bell, Andrew Timothy Patten
  • Publication number: 20100083769
    Abstract: A compact vibratory flowmeter (200) for measuring flow characteristics of a multi-phase flow material at a flow material pressure of greater than about 10 pounds-per-square-inch (psi) is provided according to an embodiment of the invention. The compact vibratory flowmeter (200) includes one or more flow conduits (301), at least two pickoff sensors (308), and a driver (309). The compact vibratory flowmeter (200) further includes a maximum water drive frequency in the one or more flow conduits (301) that is less than about 250 Hertz (Hz) and an aspect ratio (L/H) of the one or more flow conduits (301) that is greater than about 2.5. A height-to-bore ratio (H/B) of the one or more flow conduits (301) is less than about 10 and a bowed flow conduit geometry includes end bend angles ? of between about 120 degrees and about 170 degrees.
    Type: Application
    Filed: April 6, 2005
    Publication date: April 8, 2010
    Applicant: MICRO MOTION, INC.
    Inventors: Anthony William Pankratz, Mark James Bell, Andrew Timothy Patten
  • Patent number: 7614273
    Abstract: A method and apparatus for validating the flow calibration factor of a Coriolis flowmeter. In accordance with a first embodiment, an improved material density is obtained by measuring material density when the temperature of the material is equal to a predetermined reference temperature. In accordance with a second embodiment, a preprogrammed data base stores density/temperature relationships. Improved density information is obtained by measuring the density and temperature of the material, applying the measured density/temperature information from the data base, and obtaining density information compensated for a predetermined reference temperature. The improved density information obtained for both embodiments is unaffected by temperature changes and is used to validate the flow calibration factor. The flow calibration factor compensation for pressure changes and changes in material composition is obtained in a similar manner.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: November 10, 2009
    Assignee: Micro Motion, Inc.
    Inventors: Andrew Timothy Patten, Graeme Ralph Duffill
  • Patent number: 7558684
    Abstract: A flow meter filter system (200) according to an embodiment of the invention includes a noise pass filter (203) configured to receive a first version of a flow meter signal and filter out the flow meter data from the flow meter signal to leave a noise signal, a noise quantifier (204) configured to receive the noise signal from the noise pass filter (203) and measure noise characteristics of the noise signal, a damping adjuster (205) configured to receive the noise characteristics from the noise quantifier (204) and generate a damping value based on the noise characteristics, and a filter element (206) configured to receive a second version of the flow meter signal and receive the damping value from the damping adjuster (205), with the filter element (206) being further configured to damp the second version of the flow meter signal based on the damping value in order to produce a filtered flow meter signal.
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: July 7, 2009
    Assignee: Micro Motion, Inc.
    Inventors: Andrew Timothy Patten, Denis M. Henrot, Craig B. McAnally, Paul J. Hays, Wayne R. Brinkman
  • Publication number: 20080302169
    Abstract: A method and apparatus for validating the flow calibration factor of a Coriolis flowmeter. In accordance with a first embodiment, an improved material density is obtained by measuring material density when the temperature of the material is equal to a predetermined reference temperature. In accordance with a second embodiment, a preprogrammed data base stores density/temperature relationships. Improved density information is obtained by measuring the density and temperature of the material, applying the measured density/temperature information from the data base, and obtaining density information compensated for a predetermined reference temperature. The improved density information obtained for both embodiments is unaffected by temperature changes and is used to validate the flow calibration factor. The flow calibration factor compensation for pressure changes and changes in material composition is obtained in a similar manner.
    Type: Application
    Filed: August 18, 2008
    Publication date: December 11, 2008
    Applicant: Micro Motion, Inc.
    Inventors: Andrew Timothy Patten, Graeme Ralph Duffill
  • Publication number: 20080281535
    Abstract: Meter electronics (20) for a flow meter (5) is provided according to an embodiment of the invention. The meter electronics (20) includes an interface (201) for receiving a vibrational response from the flow meter (5) and a processing system (203) in communication with the interface (201). The vibrational response is a response to a vibration of the flow meter (5) at a substantially resonant frequency. The processing system (203) is configured to receive the vibrational response from the interface (201), determine a frequency (?0) of the vibrational response, determine a response voltage (V) and a drive current (I) of the vibrational response, measure a decay characteristic (?) of the flow meter (5), and determine the stiffness parameter (K) from the frequency (?0), the response voltage (V), the drive current (I), and the decay characteristic (?).
    Type: Application
    Filed: September 19, 2005
    Publication date: November 13, 2008
    Inventors: Matthew Joseph Rensing, Andrew Timothy Patten, Timothy J. Cunningham, Mark James Bell
  • Patent number: 7421350
    Abstract: A meter electronics and method for detecting a residual material in a flow meter assembly are provided according to the invention. The meter electronics includes a processing system adapted to direct the flow meter to vibrate the flow meter assembly and receive a vibrational response from the flow meter assembly. The meter electronics further includes a storage system configured to store flow meter parameters and data. The meter electronics is further characterized by the processing system being configured to compare the vibrational response to a predetermined residual material threshold to detect the residual material.
    Type: Grant
    Filed: June 22, 2004
    Date of Patent: September 2, 2008
    Assignee: Micro Motinn, Inc.
    Inventors: Graeme Ralph Duffill, Andrew Timothy Patten, Mark James Bell
  • Publication number: 20080190195
    Abstract: Meter electronics (20) for determining a liquid flow fraction in a gas flow material flowing through a flow meter (5) is provided according to an embodiment of the invention. The meter electronics (20) includes an interface (201) for receiving a first sensor signal and a second sensor signal from the flow meter (5) and a processing system (203) in communication with the interface (201). The processing system (203) is configured to receive the first and second sensor signals from the interface (201), determine a substantially instantaneous flow stream density of the gas flow material using the first sensor signal and the second sensor signal, compare the substantially instantaneous flow stream density to at least one of a predetermined gas density that is representative of a gas flow fraction of the gas flow material and a predetermined liquid density that is representative of a liquid flow fraction, and determine the liquid flow fraction from the comparison.
    Type: Application
    Filed: March 15, 2006
    Publication date: August 14, 2008
    Applicant: MICRO MOTION, INC.
    Inventors: Graeme Ralph Duffill, Steven M. Jones, Andrew Timothy Patten
  • Patent number: 7343775
    Abstract: A gas test system (300) is disclosed comprised of a flow loop (302), a blower system (304), a temperature control system (306), a reference meter system (308), and a unit under test (UUT) system (310). The UUT system connects a unit under test (UUT) to the flow loop. The blower system receives the gas under pressure at an inlet (321), and generates a high flow rate of the gas out of an outlet (322) while generating a low pressure rise from the inlet to the outlet. The temperature control system receives the flow of gas from the blower system and controls the temperature of the gas. The reference meter system and the UUT in the UUT system measure a property of the gas circulating through the flow loop. The measurements of the reference meter system can be compared to the measurements of the UUT to calibrate the UUT.
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: March 18, 2008
    Assignee: Micro Motion, Inc.
    Inventors: Timothy J. Cunningham, Andrew Timothy Patten, Charles L. Gray, Dean M. Standiford
  • Patent number: 7257495
    Abstract: A flow meter filter system (200) according to an embodiment of the invention includes a noise pass filter (203) configured to receive a first version of a flow meter signal and filter out the flow meter data from the flow meter signal to leave a noise signal, a noise quantifier (204) configured to receive the noise signal from the noise pass filter (203) and measure noise characteristics of the noise signal, a damping adjuster (205) configured to receive the noise characteristics from the noise quantifier (204) and generate a damping value based on the noise characteristics, and a filter element (206) configured to receive a second version of the flow meter signal and receive the damping value from the damping adjuster (205), with the filter element (206) being further configured to damp the second version of the flow meter signal based on the damping value in order to produce a filtered flow meter signal.
    Type: Grant
    Filed: September 5, 2003
    Date of Patent: August 14, 2007
    Assignee: Micro Motion, Inc.
    Inventors: Andrew Timothy Patten, Denis M. Henrot, Craig B. McAnally, Paul J. Hays, Wayne R. Brinkman
  • Patent number: 5687100
    Abstract: A Coriolis effect densimeter which produces density output data of improved accuracy by embodying the principal that the natural frequency of a vibrating tube filled with material decreases with an increase in the material mass flow rate. High accuracy output data is achieved by measuring the density and the mass flow rate of material through the vibrating tube, correcting the measured density to compensate for the effect of the mass flow rate, and correcting the mass flow rate correction of the density measurement for changes due to temperature.
    Type: Grant
    Filed: July 16, 1996
    Date of Patent: November 11, 1997
    Assignee: Micro Motion, Inc.
    Inventors: Marc Allan Buttler, Andrew Timothy Patten, Charles Paul Stack