Patents by Inventor Andrew Tran

Andrew Tran has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11945808
    Abstract: Substituted cyclohexyl chemical entities of Formula (I): wherein Ra, G, and Rb have any of the values described herein, and compositions comprising such chemical entities; methods of making them; and their use in a wide range of methods, including metabolic and reaction kinetic studies; detection and imaging techniques; radioactive therapies; modulating and treating disorders mediated by nociceptin activity or dopamine signaling; treating neurological disorders, neurodegenerative diseases, depression, and schizophrenia; enhancing the efficiency of cognitive and motor training; and treating peripheral disorders, including renal, respiratory, gastrointestinal, liver, genitourinary, metabolic, and inflammatory disorders.
    Type: Grant
    Filed: June 15, 2022
    Date of Patent: April 2, 2024
    Assignee: Dart Neuroscience, LLC
    Inventors: Jillian Basinger Thompson, Brett C. Bookser, Scott Burley, Pablo Garcia-Reynaga, Andrew Hudson, Marco Peters, Benjamin Pratt, Aaron Thompson, Joe Tran, Lino Valdez
  • Publication number: 20240082842
    Abstract: A microfluidic device comprising: —a first wall comprising a first substrate on which a plurality of closed patterns is grafted, —a second wall, facing the first wall, comprising a second substrate, —a plurality of nucleic acids grafted either on the first substrate or on the second substrate, wherein each nucleic acid comprises a barcode that encodes the position of the nucleic acid on said first or second substrate, wherein at least the plurality of closed patterns or the second substrate is made of an actuatable hydrogel which is swellable between a retracted state and a swollen state in which the closed patterns and the second substrate come into contact.
    Type: Application
    Filed: January 12, 2022
    Publication date: March 14, 2024
    Inventors: Hubert GEISLER, Patrick TABELING, Andrew GRIFFITHS, Stéphane CHIRON, Fabrice MONTI, Gaël BLIVET-BAILLY, Marjan ABDORAHIM, Yvette TRAN-AMARELIS, Phillipe NGHE
  • Patent number: 11928167
    Abstract: In one or more implementations, content generated using a client application may be associated with a classification. A number of classifications may be recommended to users of a client application based on alphanumeric characters entered by the users. Additionally, a number of classifications may be recommended to the users of the client application based one or more additional criteria, such as recently used classifications or classifications having at least a threshold frequency of use by additional users of the client application.
    Type: Grant
    Filed: March 30, 2022
    Date of Patent: March 12, 2024
    Assignee: Snap Inc.
    Inventors: Nathan Kenneth Boyd, Andrew Grosvenor Cooper, Suraj Vindana Samaranayake, Vu Tran, Yamill Vallecillo, Yiwen Zhan
  • Publication number: 20240080199
    Abstract: A secure multi-factor encrypted authentication method includes creating a Secure Personal Identifier (SPI) to authenticate the identity of a user, storing the SPI in immutable storage using an asymmetric encryption object of the user, and using the SPI to allow secure access to a digital resource. A multi-factor encrypted authentication system includes an access portal including an asymmetric encryption object, an immutable storage communicating with the access portal using the asymmetric encryption object, an identity server communicating with both the access portal and the immutable storage, and a filing system receiving identity information from the identity server and returning a hash (CID).
    Type: Application
    Filed: September 1, 2022
    Publication date: March 7, 2024
    Inventors: Gustavo Di Martino, Randall Crowder, Andrew Soltan, Dustin Tran
  • Publication number: 20230416813
    Abstract: This disclosure provides a biochip comprising a plurality of wells. The biochip includes a membrane that is disposed in or adjacent to an individual well of the plurality of wells. The membrane comprises a nanopore, and the individual well comprises an electrode that detects a signal upon ionic flow through the pore in response to a species passing through or adjacent to the nanopore. The electrode can be a non-sacrificial electrode. A lipid bilayer can be formed over the plurality of wells using a bubble.
    Type: Application
    Filed: June 19, 2023
    Publication date: December 28, 2023
    Applicant: Roche Sequencing Solutions, Inc.
    Inventors: Randall W. Davis, Edward Shian Liu, Eric Takeshi Harada, Anne Aguirre, Andrew Trans, James Pollard, Cynthia Cech
  • Publication number: 20230363643
    Abstract: Systems and methods are disclosed for generating an electro-anatomical map of the heart. Techniques disclosed include measuring groups of activation signals. The activation signals of each group are measured by respective electrodes of a mapping catheter that is placed at a respective position in the heart. Where at least one electrode of the mapping catheter that measured an activation signal of one group spatially overlapped with a respective electrode of the mapping catheter that measured an activation signal of another group. Techniques disclosed further include obtaining, based on the groups of activation signals, respective sets of time measurements, utilizing the overlapping electrodes. And, constructing the electro-anatomical map based on the obtained sets of time measurements.
    Type: Application
    Filed: May 12, 2022
    Publication date: November 16, 2023
    Applicant: Biosense Webster (Israel) Ltd.
    Inventor: Brandon Andrew Tran
  • Patent number: 11739378
    Abstract: The present disclosure relates to compositions and methods based on polypeptide-tagged nucleotide, and the use of such polypeptide-tagged nucleotides in nanopore devices and methods.
    Type: Grant
    Filed: March 15, 2021
    Date of Patent: August 29, 2023
    Assignees: Roche Sequencing Solutions, Inc., Roche Molecular Systems, Inc.
    Inventors: Frank Bergmann, Christoph Seidel, Andrew Trans, Dmitriy Gremyachinskiy, Hannes Kuchelmeister, Lars Hillringhaus
  • Patent number: 11725236
    Abstract: This disclosure provides a biochip comprising a plurality of wells. The biochip includes a membrane that is disposed in or adjacent to an individual well of the plurality of wells. The membrane comprises a nanopore, and the individual well comprises an electrode that detects a signal upon ionic flow through the pore in response to a species passing through or adjacent to the nanopore. The electrode can be a non-sacrificial electrode. A lipid bilayer can be formed over the plurality of wells using a bubble.
    Type: Grant
    Filed: April 27, 2021
    Date of Patent: August 15, 2023
    Inventors: Randall W. Davis, Edward Shian Liu, Eric Takeshi Harada, Anne Aguirre, Andrew Trans, James Pollard, Cynthia Cech
  • Publication number: 20230190235
    Abstract: Medical systems and methods are provided in which a processor receives the 3D ultrasound images and receives position signals from a position tracking device, indicating the position of a corresponding probe relative to the 3D ultrasound images. Based on the probe position, a region of interest is selected that contains the position the medical probe within the 3D ultrasound images, and the selected region of interest is rendered to a display together with a representation of the medical probe superimposed on the region of interest.
    Type: Application
    Filed: October 27, 2022
    Publication date: June 22, 2023
    Inventors: Assaf Govari, Andres Claudio Altmann, Roy Urman, Morris Ziv-Ari, Lior Zar, Brandon Andrew Tran, Shaked Meitav, Hanna Cohen-Sacomsky
  • Publication number: 20220090189
    Abstract: The present disclosure relates to compositions and methods based on polypeptide-tagged nucleotide, and the use of such polypeptide-tagged nucleotides in nanopore devices and methods.
    Type: Application
    Filed: March 15, 2021
    Publication date: March 24, 2022
    Applicant: Roche Sequencing Solutions, Inc.
    Inventors: Frank BERGMANN, Christoph SEIDEL, Andrew TRANS, Dmitriy GREMYACHINSKIY, Hannes KUCHELMEISTER, Lars HILLRINGHAUS
  • Publication number: 20210324462
    Abstract: This disclosure provides a biochip comprising a plurality of wells. The biochip includes a membrane that is disposed in or adjacent to an individual well of the plurality of wells. The membrane comprises a nanopore, and the individual well comprises an electrode that detects a signal upon ionic flow through the pore in response to a species passing through or adjacent to the nanopore. The electrode can be a non-sacrificial electrode. A lipid bilayer can be formed over the plurality of wells using a bubble.
    Type: Application
    Filed: April 27, 2021
    Publication date: October 21, 2021
    Applicant: Roche Sequencing Solutions, Inc.
    Inventors: Randall W. DAVIS, Edward Shian LIU, Eric Takeshi HARADA, Anne AGUIRRE, Andrew TRANS, James POLLARD, Cynthia CECH
  • Publication number: 20210317521
    Abstract: The present disclosure relates to compounds comprising a negatively-charged polymer moiety which is capable of entering a nanopore and upon entering a nanopore in the presence of positive ions results in an increased flow of the positive ions through the nanopore. The present disclosure provides methods of preparing the compounds and for their use as nanopore-detectable tags, in particular, for nanopore-based nucleic acid detection and sequencing.
    Type: Application
    Filed: April 13, 2021
    Publication date: October 14, 2021
    Applicant: Roche Sequencing Solutions, Inc.
    Inventors: Dmitriy Gremyachinskiy, Peter Crisalli, Andrew Trans, Ashwini Bhat
  • Patent number: 11021745
    Abstract: This disclosure provides a biochip comprising a plurality of wells. The biochip includes a membrane that is disposed in or adjacent to an individual well of the plurality of wells. The membrane comprises a nanopore, and the individual well comprises an electrode that detects a signal upon ionic flow through the pore in response to a species passing through or adjacent to the nanopore. The electrode can be a non-sacrificial electrode. A lipid bilayer can be formed over the plurality of wells using a bubble.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: June 1, 2021
    Assignee: Roche Sequencing Solutions, Inc.
    Inventors: Randall W. Davis, Edward Shian Liu, Eric Takeshi Harada, Anne Aguirre, Andrew Trans, James Pollard, Cynthia Cech
  • Patent number: 11008613
    Abstract: The present disclosure relates to compounds comprising a negatively-charged polymer moiety which is capable of entering a nanopore and upon entering a nanopore in the presence of positive ions results in an increased flow of the positive ions through the nanopore. The present disclosure provides methods of preparing the compounds and for their use as nanopore-detectable tags, in particular, for nanopore-based nucleic acid detection and sequencing.
    Type: Grant
    Filed: March 20, 2020
    Date of Patent: May 18, 2021
    Assignee: Roche Sequencing Solutions, Inc.
    Inventors: Dmitriy Gremyachinskiy, Peter Crisalli, Andrew Trans, Ashwini Bhat
  • Patent number: 10975426
    Abstract: The present disclosure relates to compositions and methods based on polypeptide-tagged nucleotide, and the use of such polypeptide-tagged nucleotides in nanopore devices and methods.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: April 13, 2021
    Assignee: Roche Sequencing Solutions, Inc.
    Inventors: Frank Bergmann, Christoph Seidel, Andrew Trans, Dmitriy Gremyachinskiy, Hannes Kuchelmeister, Lars Hillringhaus
  • Publication number: 20210088511
    Abstract: Provided are nanopore-based methods, compositions, and systems for assessing analyte-ligand interactions and analyte concentration in a fluid solution. The compositions include an analyte detection complex that is associated with a nanopore to form a nanopore assembly, the analyte detection complex including an analyte ligand. As a first voltage is applied across the nanopore assembly, the analyte ligand is presented to an analyte in the solution. As a second voltage that is opposite in polarity to the first voltage is applied across the nanopore assembly, the analyte binds to the analyte. By comparing the total number of analyte-ligand binding pairs to a control binding count, the concentration of the analyte can be determined. In other examples, further increasing the second voltage can result in dissociation of the analyte-ligand pair, from which a dissociation voltage—and hence a dissociation constant—can be determined.
    Type: Application
    Filed: September 30, 2020
    Publication date: March 25, 2021
    Applicant: Roche Diagnostics Operations, Inc.
    Inventors: Peter CRISALLI, Dmitriy GREMYACHINSKIY, Dieter HEINDL, Hannes KUCHELMEISTER, Michael SCHRAEML, Andrew TRANS
  • Patent number: 10719563
    Abstract: A method for providing information to a mobile handheld device from a database system is provided. The method embodiment includes receiving by a node hosting an information management service a request for data. The request is received from a network enabled mobile handheld device that has intermittent network connectivity. The information management service is configured for identifying unrequested anticipated data based on the requested data. In an embodiment, the anticipated data is identified based on a data request pattern associated with the requested data. Once identified, the requested data and the anticipated data is retrieved from a database system. The requested data and at least a portion of the anticipated data is sent to the network enabled mobile handheld device via a network. By providing anticipated data along with requested data, a mobile user has direct access to unrequested anticipated data when network connectivity is interrupted.
    Type: Grant
    Filed: October 11, 2016
    Date of Patent: July 21, 2020
    Assignee: salesforce.com, inc.
    Inventors: Leo Tenenblat, Marko Koosel, Thomas Sola, Siuling Ku, Andrew Tran, Ning Song, Doug Chasman
  • Publication number: 20200216894
    Abstract: The present disclosure relates to compounds comprising a negatively-charged polymer moiety which is capable of entering a nanopore and upon entering a nanopore in the presence of positive ions results in an increased flow of the positive ions through the nanopore. The present disclosure provides methods of preparing the compounds and for their use as nanopore-detectable tags, in particular, for nanopore-based nucleic acid detection and sequencing.
    Type: Application
    Filed: March 20, 2020
    Publication date: July 9, 2020
    Applicant: Roche Sequencing Solutions, Inc.
    Inventors: Dmitriy Gremyachinskiy, Peter Crisalli, Andrew Trans, Ashwini Bhat
  • Patent number: 10669580
    Abstract: The present disclosure relates to compounds comprising a negatively-charged polymer moiety which is capable of entering a nanopore and upon entering a nanopore in the presence of positive ions results in an increased flow of the positive ions through the nanopore. The present disclosure provides methods of preparing the compounds and for their use as nanopore-detectable tags, in particular, for nanopore-based nucleic acid detection and sequencing.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: June 2, 2020
    Assignee: Roche Sequencing Solutions, Inc.
    Inventors: Dmitriy Gremyachinskiy, Peter Crisalli, Andrew Trans, Ashwini Bhat
  • Publication number: 20190185927
    Abstract: This disclosure provides a biochip comprising a plurality of wells. The biochip includes a membrane that is disposed in or adjacent to an individual well of the plurality of wells. The membrane comprises a nanopore, and the individual well comprises an electrode that detects a signal upon ionic flow through the pore in response to a species passing through or adjacent to the nanopore. The electrode can be a non-sacrificial electrode. A lipid bilayer can be formed over the plurality of wells using a bubble.
    Type: Application
    Filed: February 11, 2019
    Publication date: June 20, 2019
    Applicant: Genia Technologies, Inc.
    Inventors: Randall W. DAVIS, Edward Shian LIU, Eric Takeshi HARADA, Anne AGUIRRE, Andrew TRANS, James POLLARD, Cynthia CECH