Patents by Inventor Andrew TRANS

Andrew TRANS has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240209432
    Abstract: The present disclosure relates to compositions and methods based on polypeptide-tagged nucleotide, and the use of such polypeptide-tagged nucleotides in nanopore devices and methods.
    Type: Application
    Filed: June 28, 2023
    Publication date: June 27, 2024
    Applicant: Roche Sequencing Solutions, Inc.
    Inventors: Frank BERGMANN, Christoph SEIDEL, Andrew TRANS, Dmitriy GREMYACHINSKIY, Hannes KUCHELMEISTER, Lars HILLRINGHAUS
  • Publication number: 20220090189
    Abstract: The present disclosure relates to compositions and methods based on polypeptide-tagged nucleotide, and the use of such polypeptide-tagged nucleotides in nanopore devices and methods.
    Type: Application
    Filed: March 15, 2021
    Publication date: March 24, 2022
    Applicant: Roche Sequencing Solutions, Inc.
    Inventors: Frank BERGMANN, Christoph SEIDEL, Andrew TRANS, Dmitriy GREMYACHINSKIY, Hannes KUCHELMEISTER, Lars HILLRINGHAUS
  • Publication number: 20210324462
    Abstract: This disclosure provides a biochip comprising a plurality of wells. The biochip includes a membrane that is disposed in or adjacent to an individual well of the plurality of wells. The membrane comprises a nanopore, and the individual well comprises an electrode that detects a signal upon ionic flow through the pore in response to a species passing through or adjacent to the nanopore. The electrode can be a non-sacrificial electrode. A lipid bilayer can be formed over the plurality of wells using a bubble.
    Type: Application
    Filed: April 27, 2021
    Publication date: October 21, 2021
    Applicant: Roche Sequencing Solutions, Inc.
    Inventors: Randall W. DAVIS, Edward Shian LIU, Eric Takeshi HARADA, Anne AGUIRRE, Andrew TRANS, James POLLARD, Cynthia CECH
  • Publication number: 20210088511
    Abstract: Provided are nanopore-based methods, compositions, and systems for assessing analyte-ligand interactions and analyte concentration in a fluid solution. The compositions include an analyte detection complex that is associated with a nanopore to form a nanopore assembly, the analyte detection complex including an analyte ligand. As a first voltage is applied across the nanopore assembly, the analyte ligand is presented to an analyte in the solution. As a second voltage that is opposite in polarity to the first voltage is applied across the nanopore assembly, the analyte binds to the analyte. By comparing the total number of analyte-ligand binding pairs to a control binding count, the concentration of the analyte can be determined. In other examples, further increasing the second voltage can result in dissociation of the analyte-ligand pair, from which a dissociation voltage—and hence a dissociation constant—can be determined.
    Type: Application
    Filed: September 30, 2020
    Publication date: March 25, 2021
    Applicant: Roche Diagnostics Operations, Inc.
    Inventors: Peter CRISALLI, Dmitriy GREMYACHINSKIY, Dieter HEINDL, Hannes KUCHELMEISTER, Michael SCHRAEML, Andrew TRANS
  • Publication number: 20190185927
    Abstract: This disclosure provides a biochip comprising a plurality of wells. The biochip includes a membrane that is disposed in or adjacent to an individual well of the plurality of wells. The membrane comprises a nanopore, and the individual well comprises an electrode that detects a signal upon ionic flow through the pore in response to a species passing through or adjacent to the nanopore. The electrode can be a non-sacrificial electrode. A lipid bilayer can be formed over the plurality of wells using a bubble.
    Type: Application
    Filed: February 11, 2019
    Publication date: June 20, 2019
    Applicant: Genia Technologies, Inc.
    Inventors: Randall W. DAVIS, Edward Shian LIU, Eric Takeshi HARADA, Anne AGUIRRE, Andrew TRANS, James POLLARD, Cynthia CECH
  • Publication number: 20190002968
    Abstract: The present disclosure relates to compositions and methods based on polypeptide-tagged nucleotide, and the use of such polypeptide-tagged nucleotides in nanopore devices and methods.
    Type: Application
    Filed: August 26, 2016
    Publication date: January 3, 2019
    Inventors: Frank BERGMANN, Christoph SEIDEL, Andrew TRANS, Dmitriy GREMYACHINSKIY, Hannes KUCHELMEISTER, Lars HILLRINGHAUS
  • Publication number: 20170198343
    Abstract: This disclosure provides a biochip comprising a plurality of wells. The biochip includes a membrane that is disposed in or adjacent to an individual well of the plurality of wells. The membrane comprises a nanopore, and the individual well comprises an electrode that detects a signal upon ionic flow through the pore in response to a species passing through or adjacent to the nanopore. The electrode can be a non-sacrificial electrode. A lipid bilayer can be formed over the plurality of wells using a bubble.
    Type: Application
    Filed: December 20, 2016
    Publication date: July 13, 2017
    Inventors: Randall W. DAVIS, Edward Shian LIU, Eric Takeshi HARADA, Anne AGUIRRE, Andrew TRANS, James POLLARD, Cynthia CECH
  • Publication number: 20160327507
    Abstract: A biochip for molecular detection and sensing is disclosed. The biochip includes a substrate. The biochip includes a plurality of discrete sites formed on the substrate having a density of greater than five hundred wells per square millimeter. Each discrete site includes sidewalls disposed on the substrate to form a well. Each discrete site includes an electrode disposed at the bottom of the well. In some embodiments, the wells are formed such that cross-talk between the wells is reduced. In some embodiments, the electrodes disposed at the bottom of the wells are organized into groups of electrodes, wherein each group of electrodes shares a common counter electrode. In some embodiments, the electrode disposed at the bottom of the well has a dedicated counter electrode. In some embodiments, surfaces of the sidewalls are silanized such that the surfaces facilitate the forming of a membrane in or adjacent to the well.
    Type: Application
    Filed: March 10, 2016
    Publication date: November 10, 2016
    Inventors: Randall W. DAVIS, Edward Shian LIU, Eric Takeshi HARADA, Anne AGUIRRE, Andrew TRANS, James POLLARD, Cynthia CECH, Hui TIAN, Robert YUAN, John FOSTER, Roger CHEN
  • Publication number: 20150152494
    Abstract: This disclosure provides a biochip comprising a plurality of wells. The biochip includes a membrane that is disposed in or adjacent to an individual well of the plurality of wells. The membrane comprises a nanopore, and the individual well comprises an electrode that detects a signal upon ionic flow through the pore in response to a species passing through or adjacent to the nanopore. The electrode can be a non-sacrificial electrode. A lipid bilayer can be formed over the plurality of wells using a bubble.
    Type: Application
    Filed: October 22, 2014
    Publication date: June 4, 2015
    Inventors: Randall W. DAVIS, Edward Shian LIU, Eric Takeshi HARADA, Anne AGUIRRE, Andrew TRANS, James POLLARD, Cynthia CECH
  • Publication number: 20150153302
    Abstract: A biochip for molecular detection and sensing is disclosed. The biochip includes a substrate. The biochip includes a plurality of discrete sites formed on the substrate having a density of greater than five hundred wells per square millimeter. Each discrete site includes sidewalls disposed on the substrate to form a well. Each discrete site includes an electrode disposed at the bottom of the well. In some embodiments, the wells are formed such that cross-talk between the wells is reduced. In some embodiments, the electrodes disposed at the bottom of the wells are organized into groups of electrodes, wherein each group of electrodes shares a common counter electrode. In some embodiments, the electrode disposed at the bottom of the well has a dedicated counter electrode. In some embodiments, surfaces of the sidewalls are silanized such that the surfaces facilitate the forming of a membrane in or adjacent to the well.
    Type: Application
    Filed: October 22, 2014
    Publication date: June 4, 2015
    Inventors: Randall W. DAVIS, Edward Shian LIU, Eric Takeshi HARADA, Anne AGUIRRE, Andrew TRANS, James POLLARD, Cynthia CECH