Patents by Inventor Andrew W. Baur

Andrew W. Baur has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9366196
    Abstract: A system according to the principles of the present disclosure includes a throttle limit determination module, a throttle area adjustment module, and a throttle control module. The throttle limit determination module determines a throttle limit based on an intake cam phaser position. The throttle area adjustment module adjusts a desired throttle area based on the throttle limit when the desired throttle area is greater than the throttle limit. The throttle control module controls a throttle opening area of a throttle valve based on the desired throttle area.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: June 14, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Jonathan N. Crombe, Andrew W. Baur
  • Patent number: 9214153
    Abstract: A method of controlling sounds associated with a vehicle is provided. The method includes: performing on a processor, monitoring engine torque; and selectively controlling the generation of one or more tones associated with the vehicle based on the engine torque.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: December 15, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Scott M. Reilly, Timothy R. Bohn, Andrew W. Baur
  • Patent number: 9091219
    Abstract: A control system includes a driver torque determination module, a lash zone torque determination module, a rate limit determination module, and an immediate torque determination module. The driver torque determination module determines a driver torque request when a driver depresses an accelerator pedal while a vehicle is coasting. The lash zone torque determination module determines a lash zone torque based on a transmission gear and an engine speed. The rate limit determination module determines an adjustment rate limit based on a previous immediate torque request, the lash zone torque, and the transmission gear. The immediate torque determination module determines a present immediate torque request based on the driver torque request and selectively determines the present immediate torque request based on the adjustment rate limit.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: July 28, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Krishnendu Kar, Pahngroc Oh, Andrew W. Baur
  • Patent number: 8887692
    Abstract: A control system for an engine includes a first spark control module and a second spark control module. The first spark control module retards spark timing for M of N cylinders of the engine to a first spark timing during a period before deactivating or after reactivating the M cylinders, wherein M is an integer greater than or equal to one, and wherein N is an integer greater than M. The second spark control module advances spark timing for (N?M) active cylinders of the engine to a second desired spark timing during the period before deactivating or after reactivating the M cylinders, wherein the second spark timing is greater than the first spark timing.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: November 18, 2014
    Inventors: Andrew W. Baur, Sean Slade
  • Patent number: 8696517
    Abstract: A control system for use with an engine and a transmission in a vehicle is provided that includes at least one controller having a processor with at least one stored algorithm that determines different crankshaft torque capacities associated with different respective torque actuators including a relatively slow torque actuator, such as an airflow actuator, and at least one relatively fast torque actuator, such as a spark actuator or a fuel actuator. The algorithm determines a torque actuation range over which to modify engine torque during an oncoming shift of the transmission. The torque actuation range may be based at least partially on a target gear of the upshift, desired shift duration, and a vehicle operating condition indicative of an operator intent regarding shift duration. Requests for torque modification by use of the torque actuators are then made to provide the torque actuation range.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: April 15, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Christopher E. Whitney, Mark A. Schang, Jeffrey M. Kaiser, Andrew W. Baur, Ning Jin
  • Patent number: 8646252
    Abstract: A control system includes a temperature determination module and a catalyst protection module. The temperature determination module determines a temperature of exhaust gas based on a resistance of a heating element of an oxygen sensor. The catalyst protection module adjusts an operating parameter of an engine to decrease the temperature of the exhaust gas when the temperature of the exhaust gas is greater than a threshold temperature. The threshold temperature is based on a temperature that damages a catalyst in an exhaust system.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: February 11, 2014
    Inventors: Bradley Gibson, Andrew W. Baur
  • Patent number: 8504265
    Abstract: A control system for an engine includes a torque phase detection module, a torque request generation module, and an engine torque control module. The torque phase detection module detects a start of a torque phase of an upshift of a transmission coupled to the engine. The torque request generation module generates an engine torque request at the start of the torque phase of the transmission upshift. The engine torque control module controls engine torque during the torque phase of the transmission upshift based on the engine torque request.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: August 6, 2013
    Inventors: Andrew W. Baur, Craig J. Hawkins, Michael J. Pitsch
  • Patent number: 8473179
    Abstract: An engine control system includes a desired manifold absolute pressure (MAP) module, a MAP to torque module, a threshold determination module, and a fuel economy (FE) mode module. The desired MAP module determines a desired MAP for operation of an engine in one of a cylinder deactivation mode and a low-lift mode based on a difference between a desired vacuum and an air pressure upstream of a throttle valve. The MAP to torque module determines a desired torque output of the engine for operation in the one of the cylinder deactivation mode and the low-lift mode based on the desired MAP. The threshold determination module determines an entry torque based on the desired torque output. The FE mode module selectively triggers operation in the one of the cylinder deactivation mode and the low-lift mode based on a comparison of the entry torque and a torque request.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: June 25, 2013
    Inventors: Christopher E. Whitney, Andrew W. Baur, Alfred E. Spitza, Jr., Zhong Li, Jeffrey M. Kaiser
  • Publication number: 20130104843
    Abstract: A system according to the principles of the present disclosure includes a throttle limit determination module, a throttle area adjustment module, and a throttle control module. The throttle limit determination module determines a throttle limit based on an intake cam phaser position. The throttle area adjustment module adjusts a desired throttle area based on the throttle limit when the desired throttle area is greater than the throttle limit. The throttle control module controls a throttle opening area of a throttle valve based on the desired throttle area.
    Type: Application
    Filed: May 11, 2012
    Publication date: May 2, 2013
    Applicant: GM Global Technology Operations LLC
    Inventors: Jonathan N. Crombe, Andrew W. Baur
  • Publication number: 20130045832
    Abstract: A control system for use with an engine and a transmission in a vehicle is provided that includes at least one controller having a processor with at least one stored algorithm that determines different crankshaft torque capacities associated with different respective torque actuators including a relatively slow torque actuator, such as an airflow actuator, and at least one relatively fast torque actuator, such as a spark actuator or a fuel actuator. The algorithm determines a torque actuation range over which to modify engine torque during an oncoming shift of the transmission. The torque actuation range may be based at least partially on a target gear of the upshift, desired shift duration, and a vehicle operating condition indicative of an operator intent regarding shift duration. Requests for torque modification by use of the torque actuators are then made to provide the torque actuation range.
    Type: Application
    Filed: August 19, 2011
    Publication date: February 21, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Christopher E. Whitney, Mark A. Schang, Jeffrey M. Kaiser, Andrew W. Baur, Ning Jin
  • Patent number: 8346447
    Abstract: An engine control system includes an inertia phase detection module, a feed-forward (FF) engine speed module, a FF APC module, a FF phaser position module, and a phaser control module. The inertia phase detection module determines when an inertia phase of a gear shift is occurring within a transmission. The FF engine speed module predicts an engine speed for a future time when the inertia phase ends. The FF APC module predicts an air-per-cylinder (APC) for the future time based on the engine speed. The FF phaser position module determines a FF phaser position based on the engine speed and the APC. The phaser control module controls a camshaft phaser position based on the FF phaser position during the inertia phase of the gear shift.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: January 1, 2013
    Inventors: Andrew W. Baur, Michael J. Pitsch, Christopher E. Whitney
  • Patent number: 8340888
    Abstract: A control system for a powertrain includes an energy determination module and a speed control module. The energy determination module determines a rotational energy input to the powertrain during a first period of a negative lash event of the powertrain. The speed control module selectively limits an increase in a rotational speed of the engine to a first predetermined rate based on the rotational energy during a second period of the negative lash event following the first period. The rotational energy is based on an acceleration rate of the rotational speed, and the speed control module limits the increase when the acceleration rate is greater than a predetermined acceleration rate. The speed control module further selectively increases the rotational speed at a second predetermined rate during a third period beginning at an end of the second period. A related method is also provided.
    Type: Grant
    Filed: May 6, 2010
    Date of Patent: December 25, 2012
    Inventors: Michael L. Kociba, Ning Jin, Andrew W. Baur, Daniel N Wehrwein
  • Publication number: 20120296537
    Abstract: A control system for an engine includes a torque phase detection module, a torque request generation module, and an engine torque control module. The torque phase detection module detects a start of a torque phase of an upshift of a transmission coupled to the engine. The torque request generation module generates an engine torque request at the start of the torque phase of the transmission upshift. The engine torque control module controls engine torque during the torque phase of the transmission upshift based on the engine torque request.
    Type: Application
    Filed: September 23, 2011
    Publication date: November 22, 2012
    Applicant: GM Global Technology Operations LLC
    Inventors: Andrew W. Baur, Craig J. Hawkins, Michael J. Pitsch
  • Publication number: 20120204832
    Abstract: A control system for an engine includes a first spark control module and a second spark control module. The first spark control module retards spark timing for M of N cylinders of the engine to a first spark timing during a period before deactivating or after reactivating the M cylinders, wherein M is an integer greater than or equal to one, and wherein N is an integer greater than M. The second spark control module advances spark timing for (N?M) active cylinders of the engine to a second desired spark timing during the period before deactivating or after reactivating the M cylinders, wherein the second spark timing is greater than the first spark timing.
    Type: Application
    Filed: February 14, 2011
    Publication date: August 16, 2012
    Applicant: GM Global Technology Operations LLC
    Inventors: Andrew W. Baur, Sean Slade
  • Patent number: 8234049
    Abstract: A control module includes a predicted torque control module that determines a desired throttle area based on a transmission torque request and a desired predicted torque. A throttle security module determines a throttle limit based on the desired throttle area and the desired predicted torque and determines an adjusted desired throttle area based on the throttle limit. A throttle actuator module adjusts a throttle based on the adjusted desired throttle area.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: July 31, 2012
    Inventors: Joseph M. Stempnik, Richard B. Jess, Bahram Younessi, Mark H. Costin, Michael L. Kociba, Paul A. Bauerle, Bryan D. Lehman, William R. Mayhew, Andrew W. Baur
  • Publication number: 20120150399
    Abstract: A control system includes a driver torque determination module, a lash zone torque determination module, a rate limit determination module, and an immediate torque determination module. The driver torque determination module determines a driver torque request when a driver depresses an accelerator pedal while a vehicle is coasting. The lash zone torque determination module determines a lash zone torque based on a transmission gear and an engine speed. The rate limit determination module determines an adjustment rate limit based on a previous immediate torque request, the lash zone torque, and the transmission gear. The immediate torque determination module determines a present immediate torque request based on the driver torque request and selectively determines the present immediate torque request based on the adjustment rate limit.
    Type: Application
    Filed: March 1, 2011
    Publication date: June 14, 2012
    Applicant: GM Global Technology Operations LLC
    Inventors: Krishnendu Kar, Pahngroc Oh, Andrew W. Baur
  • Patent number: 8145382
    Abstract: The entertainment system of one of the preferred embodiments includes a recreational vehicle, an event sensor attached to the recreational vehicle, an event element able to be detected by the event sensor, a processor connected to the event sensor, and a game program operated by the processor. The entertainment system functions to enable interactive game-like capabilities for a movable vehicle. The entertainment system is preferably used for children recreational vehicles (miniature cars), but may alternatively be used by other vehicles.
    Type: Grant
    Filed: November 3, 2008
    Date of Patent: March 27, 2012
    Assignee: Greycell, LLC
    Inventors: Andrew W. Baur, Tony L. Koenigsknecht
  • Publication number: 20120029787
    Abstract: An engine control system includes a desired manifold absolute pressure (MAP) module, a MAP to torque module, a threshold determination module, and a fuel economy (FE) mode module. The desired MAP module determines a desired MAP for operation of an engine in one of a cylinder deactivation mode and a low-lift mode based on a difference between a desired vacuum and an air pressure upstream of a throttle valve. The MAP to torque module determines a desired torque output of the engine for operation in the one of the cylinder deactivation mode and the low-lift mode based on the desired MAP. The threshold determination module determines an entry torque based on the desired torque output. The FE mode module selectively triggers operation in the one of the cylinder deactivation mode and the low-lift mode based on a comparison of the entry torque and a torque request.
    Type: Application
    Filed: July 28, 2010
    Publication date: February 2, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Christopher E. Whitney, Andrew W. Baur, Alfred E. Spitza, JR., Zhong Li, Jeffrey M. Kaiser
  • Publication number: 20110276256
    Abstract: A control system for a powertrain includes an energy determination module and a speed control module. The energy determination module determines a rotational energy input to the powertrain during a first period of a negative lash event of the powertrain. The speed control module selectively limits an increase in a rotational speed of the engine to a first predetermined rate based on the rotational energy during a second period of the negative lash event following the first period. The rotational energy is based on an acceleration rate of the rotational speed, and the speed control module limits the increase when the acceleration rate is greater than a predetermined acceleration rate. The speed control module further selectively increases the rotational speed at a second predetermined rate during a third period beginning at an end of the second period. A related method is also provided.
    Type: Application
    Filed: May 6, 2010
    Publication date: November 10, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Michael L. Kociba, Ning Jin, Andrew W. Baur, Daniel N. Wehrwein
  • Patent number: 8047961
    Abstract: An engine control system of a vehicle comprises a first module and a cylinder deactivation module. The first module selectively adjusts torque output by an engine based on a vehicle torque request that is greater than a driver torque request. The cylinder deactivation module selectively deactivates a cylinder of the engine when a difference between an estimated maximum torque output of the engine and the driver torque request is greater than a predetermined maximum torque.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: November 1, 2011
    Inventors: Richard B. Jess, Bahram Younessi, Michael L. Kociba, Joseph M. Stempnik, Andrew W. Baur