Patents by Inventor Andrew W. Gisler

Andrew W. Gisler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11933899
    Abstract: Through discrimination of the scattered signal polarization state, a lidar system measures a distance through semi-transparent media by the reception of single or multiple scattered signals from a scattering medium. Combined and overlapped single or multiple scattered light signals from the medium can be separated by exploiting varying polarization characteristics. This removes the traditional laser and detector pulse width limitations that determine the system's operational bandwidth, translating relative depth measurements into the conditions of two surface timing measurements and achieving sub-pulse width resolution.
    Type: Grant
    Filed: January 24, 2022
    Date of Patent: March 19, 2024
    Assignees: The Regents of the University of Colorado, LiteWave Technologies, Inc.
    Inventors: Jeffrey P. Thayer, Geoffrey Crowley, Andrew W. Gisler, Steven Mitchell, Matthew Hayman
  • Publication number: 20230384092
    Abstract: Through discrimination of the scattered signal polarization state, a lidar system measures a distance through semi-transparent media by the reception of single or multiple scattered signals from a scattering medium. Combined and overlapped single or multiple scattered light signals from the medium can be separated by exploiting varying polarization characteristics. This removes the traditional laser and detector pulse width limitations that determine the system's operational bandwidth, translating relative depth measurements into the conditions of two surface timing measurements and achieving sub-pulse width resolution.
    Type: Application
    Filed: August 14, 2023
    Publication date: November 30, 2023
    Inventors: Jeffrey P. Thayer, Geoffrey Crowley, Andrew W. Gisler, Steven Mitchell, Matthew Hayman
  • Patent number: 11725937
    Abstract: Through discrimination of the scattered signal polarization state, a lidar system measures a distance through semi-transparent media by the reception of single or multiple scattered signals from a scattering medium. Combined and overlapped single or multiple scattered light signals from the medium can be separated by exploiting varying polarization characteristics. This removes the traditional laser and detector pulse width limitations that determine the system's operational bandwidth, translating relative depth measurements into the conditions of two surface timing measurements and achieving sub-pulse width resolution.
    Type: Grant
    Filed: April 25, 2022
    Date of Patent: August 15, 2023
    Assignees: The Regents Of The University Of Colorado, A Body Corporate, Astra Lite, Inc.
    Inventors: Jeffrey P. Thayer, Geoffrey Crowley, Andrew W. Gisler, Steven Mitchell, Matthew Hayman
  • Publication number: 20230243943
    Abstract: Through discrimination of the scattered signal polarization state, a lidar system measures a distance through semi-transparent media by the reception of single or multiple scattered signals from a scattering medium. Combined and overlapped single or multiple scattered light signals from the medium can be separated by exploiting varying polarization characteristics. This removes the traditional laser and detector pulse width limitations that determine the system's operational bandwidth, translating relative depth measurements into the conditions of two surface timing measurements and achieving sub-pulse width resolution.
    Type: Application
    Filed: April 10, 2023
    Publication date: August 3, 2023
    Inventors: Jeffrey P. Thayer, Andrew W. Gisler, Steven Mitchell, Matthew Hayman
  • Patent number: 11624814
    Abstract: Through discrimination of the scattered signal polarization state, a lidar system measures a distance through semi-transparent media by the reception of single or multiple scattered signals from a scattered medium. Combined and overlapped single or multiple scattered light signals from the medium can be separated by exploiting varying polarization characteristics. This removes the traditional laser and detector pulse width limitations that determine the system's operational bandwidth, translating relative depth measurements into the conditions of two surface timing measurements and achieving sub-pulse width resolution.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: April 11, 2023
    Assignees: THE REGENTS OF THE UNIVERSITY OF COLORADO, ASTRA LITE, INC.
    Inventors: Jeffrey P. Thayer, Andrew W. Gisler, Steven Mitchell, Matthew Hayman
  • Publication number: 20220260371
    Abstract: Through discrimination of the scattered signal polarization state, a lidar system measures a distance through semi-transparent media by the reception of single or multiple scattered signals from a scattering medium. Combined and overlapped single or multiple scattered light signals from the medium can be separated by exploiting varying polarization characteristics. This removes the traditional laser and detector pulse width limitations that determine the system's operational bandwidth, translating relative depth measurements into the conditions of two surface timing measurements and achieving sub-pulse width resolution.
    Type: Application
    Filed: April 25, 2022
    Publication date: August 18, 2022
    Inventors: Jeffrey P. Thayer, Geoffrey Crowley, Andrew W. Gisler, Steven Mitchell, Matthew Hayman
  • Publication number: 20220171064
    Abstract: Through discrimination of the scattered signal polarization state, a lidar system measures a distance through semi-transparent media by the reception of single or multiple scattered signals from a scattering medium. Combined and overlapped single or multiple scattered light signals from the medium can be separated by exploiting varying polarization characteristics. This removes the traditional laser and detector pulse width limitations that determine the system's operational bandwidth, translating relative depth measurements into the conditions of two surface timing measurements and achieving sub-pulse width resolution.
    Type: Application
    Filed: January 24, 2022
    Publication date: June 2, 2022
    Inventors: Jeffrey P. Thayer, Geoffrey Crowley, Andrew W. Gisler, Steven Mitchell, Matthew Hayman
  • Patent number: 11313678
    Abstract: Through discrimination of the scattered signal polarization state, a lidar system measures a distance through semi-transparent media by the reception of single or multiple scattered signals from a scattering medium. Combined and overlapped single or multiple scattered light signals from the medium can be separated by exploiting varying polarization characteristics. This removes the traditional laser and detector pulse width limitations that determine the system's operational bandwidth, translating relative depth measurements into the conditions of two surface timing measurements and achieving sub-pulse width resolution.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: April 26, 2022
    Assignees: THE REGENTS OF THE UNIVERSITY OF COLORADO, ASTRA LIFE, INC.
    Inventors: Jeffrey P. Thayer, Geoffrey Crowley, Andrew W. Gisler, Steven Mitchell, Matthew Hayman
  • Patent number: 11231502
    Abstract: Through discrimination of the scattered signal polarization state, a lidar system measures a distance through semi-transparent media by the reception of single or multiple scattered signals from a scattering medium. Combined and overlapped single or multiple scattered light signals from the medium can be separated by exploiting varying polarization characteristics. This removes the traditional laser and detector pulse width limitations that determine the system's operational bandwidth, translating relative depth measurements into the conditions of two surface timing measurements and achieving sub-pulse width resolution.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: January 25, 2022
    Assignees: THE REGENTS OF THE UNIVERSITY OF COLORADO, ASTRA LITE, INC.
    Inventors: Jeffrey P. Thayer, Geoffrey Crowley, Andrew W. Gisler, Steven Mitchell, Matthew Hayman
  • Publication number: 20200309926
    Abstract: Through discrimination of the scattered signal polarization state, a lidar system measures a distance through semi-transparent media by the reception of single or multiple scattered signals from a scattering medium. Combined and overlapped single or multiple scattered light signals from the medium can be separated by exploiting varying polarization characteristics. This removes the traditional laser and detector pulse width limitations that determine the system's operational bandwidth, translating relative depth measurements into the conditions of two surface timing measurements and achieving sub-pulse width resolution.
    Type: Application
    Filed: June 12, 2020
    Publication date: October 1, 2020
    Inventors: Jeffrey P. Thayer, Andrew W. Gisler, Steven Mitchell, Matthew Hayman
  • Patent number: 10684362
    Abstract: Through discrimination of the scattered signal polarization state, a lidar system measures a distance through semi-transparent media by the reception of single or multiple scattered signals from a scattering medium. Combined and overlapped single or multiple scattered light signals from the medium can be separated by exploiting varying polarization characteristics. This removes the traditional laser and detector pulse width limitations that determine the system's operational bandwidth, translating relative depth measurements into the conditions of two surface timing measurements and achieving sub-pulse width resolution.
    Type: Grant
    Filed: April 6, 2016
    Date of Patent: June 16, 2020
    Assignees: THE REGENTS OF THE UNIVERSITY OF COLORADO, ASTRA LITE, INC.
    Inventors: Jeffrey P. Thayer, Andrew W. Gisler, Steven Mitchell, Matthew Hayman
  • Publication number: 20190018143
    Abstract: Through discrimination of the scattered signal polarization state, a lidar system measures a distance through semi-transparent media by the reception of single or multiple scattered signals from a scattering medium. Combined and overlapped single or multiple scattered light signals from the medium can be separated by exploiting varying polarization characteristics. This removes the traditional laser and detector pulse width limitations that determine the system's operational bandwidth, translating relative depth measurements into the conditions of two surface timing measurements and achieving sub-pulse width resolution.
    Type: Application
    Filed: April 10, 2018
    Publication date: January 17, 2019
    Applicant: The Regents of the University of Colorado, a body corporate
    Inventors: Jeffrey P. Thayer, Geoffrey Crowley, Andrew W. Gisler, Steven Mitchell, Matthew Hayman
  • Publication number: 20170184399
    Abstract: Through discrimination of the scattered signal polarization state, a lidar system measures a distance through semi-transparent media by the reception of single or multiple scattered signals from a scattering medium. Combined and overlapped single or multiple scattered light signals from the medium can be separated by exploiting varying polarization characteristics. This removes the traditional laser and detector pulse width limitations that determine the system's operational bandwidth, translating relative depth measurements into the conditions of two surface timing measurements and achieving sub-pulse width resolution.
    Type: Application
    Filed: March 16, 2017
    Publication date: June 29, 2017
    Applicant: The Regents of the University of Colorado
    Inventors: Jeffrey P. Thayer, Geoffrey Crowley, Andrew W. Gisler, Steven Mitchell, Matthew Hayman
  • Publication number: 20160223671
    Abstract: Through discrimination of the scattered signal polarization state, a lidar system measures a distance through semi-transparent media by the reception of single or multiple scattered signals from a scattering medium. Combined and overlapped single or multiple scattered light signals from the medium can be separated by exploiting varying polarization characteristics. This removes the traditional laser and detector pulse width limitations that determine the system's operational bandwidth, translating relative depth measurements into the conditions of two surface timing measurements and achieving sub-pulse width resolution.
    Type: Application
    Filed: April 6, 2016
    Publication date: August 4, 2016
    Applicant: The Regents of the University of Colorado
    Inventors: Jeffrey P. Thayer, Andrew W. Gisler, Steven Mitchell, Matthew Hayman