Patents by Inventor Andrew W. McFarland

Andrew W. McFarland has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12138626
    Abstract: In situ-generated microfluidic isolation structures incorporating a solidified polymer network, methods of preparation and use, compositions and kits therefor are described. The ability to introduce in real time, a variety of isolating structures including pens and barriers offers improved methods of micro-object manipulation in microfluidic devices. The in situ-generated isolation structures may be permanently or temporarily installed.
    Type: Grant
    Filed: February 3, 2023
    Date of Patent: November 12, 2024
    Assignee: BRUKER CELLULAR ANALYSIS, INC.
    Inventors: Kristin G. Beaumont, Nan-Linda Ding, Volker L. S. Kurz, Troy A. Lionberger, Randall D. Lowe, Jr., Daniele Malleo, Andrew W. McFarland, J. Tanner Nevill, Xiaohua Wang
  • Patent number: 12134758
    Abstract: Systems, methods and kits are described for culturing one or more biological cells in a microfluidic device, including provision of nutrients and gaseous components configured to enhance cell growth, viability, portability, or any combination thereof. In some embodiments, culturing a single cell may produce a clonal population in the microfluidic device.
    Type: Grant
    Filed: May 12, 2022
    Date of Patent: November 5, 2024
    Assignee: BRUKER CELLULAR ANALYSIS, INC.
    Inventors: Randall D. Lowe, Jr., Kristin G. Beaumont, Aathavan Karunakaran, Natalie C. Marks, Jason M. McEwen, Mark P. White, J. Tanner Nevill, Gang F. Wang, Andrew W. McFarland, Daniele Malleo, Keith J. Breinlinger, Xiao Guan, Kevin T. Chapman
  • Publication number: 20240342704
    Abstract: Proto-antigen-presenting surfaces and related kits, methods, and uses are provided. The proto-antigen-presenting surface can comprise a plurality of primary activating molecular ligands comprising a major histocompatibility complex (MHC) molecule configured to bind to a T cell receptor (TCR) of a T cell and a plurality of co-activating molecular ligands each including a TCR co-activating molecule or an adjunct TCR activating molecule, wherein an exchange factor is bound to the MHC molecules. Exchange factors include, e.g., dipeptides such as GL, GF, GR, etc. Proto-antigen-presenting surfaces can be used to rapidly prepare antigen-presenting surfaces comprising one or more peptide antigens of interest by contacting the proto-antigen-presenting surface with one or more peptide antigens so as to displace the exchange factor. As such, the disclosure facilitates rapid evaluation of the immunogenicity of peptide antigens for activating T lymphocytes.
    Type: Application
    Filed: November 9, 2023
    Publication date: October 17, 2024
    Applicant: Bruker Cellular Analysis, Inc.
    Inventors: Peter J. Beemiller, Alexander J. Mastroianni, Shao Ning Pei, Randall D. Lowe, Jr., Annamaria Mocciaro, Kevin D. Loutherback, Yelena Bronevetsky, Guido K. Stadler, Andrew W. McFarland, Kevin T. Chapman, Duane Smith, Natalie C. Marks, Amanda L. Goodsell
  • Patent number: 12102083
    Abstract: A method of processing and storing biological cells includes introducing a flowable medium into a microfluidic device, the flowable medium including biological cells; sequestering one or more biological cells from the flowable medium in one or more isolation regions of the microfluidic device; and freezing the microfluidic device including the one or more biological cells sequestered therein.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: October 1, 2024
    Assignee: BRUKER CELLULAR ANALYSIS, INC.
    Inventors: Mark P. White, Kevin T. Chapman, Andrew W. McFarland, Eric D. Hobbs, Randall D. Lowe, Jr.
  • Publication number: 20230384573
    Abstract: A system for operating an electrokinetic device includes a support configured to hold and operatively couple with the electrokinetic device, an integrated electrical signal generation subsystem configured to apply a biasing voltage across a pair of electrodes in the electrokinetic device, and a light modulating subsystem configured to emit structured light onto the electrokinetic device. The system can further include a thermally controlled flow controller, and/or be configured to measure impedance across the electrokinetic device. The system can be a light microscope, including an optical train. The system can further include a light pipe, which can be part of the light modulating system, and which can be configured to supply light of substantially uniform intensity to the light modulating system or directly to the optical train.
    Type: Application
    Filed: August 10, 2023
    Publication date: November 30, 2023
    Inventors: Andrew W. McFarland, Daniele Malleo, J. Tanner Nevill, Russell A. Newstrom, Keith J. Breinlinger, Paul M. Lundquist, Justin K. Valley, Jonathan Cloud Dragon Hubbard
  • Patent number: 11802264
    Abstract: Apparatuses and methods are described for the use of optically driven bubble, convective and displacing fluidic flow to provide motive force in microfluidic devices. Alternative motive modalities are useful to selectively dislodge and displace micro-objects, including biological cells, from a variety of locations within the enclosure of a microfluidic device.
    Type: Grant
    Filed: October 12, 2020
    Date of Patent: October 31, 2023
    Assignee: PHENOMEX INC.
    Inventors: Volker L. S. Kurz, Troy A. Lionberger, Eric K. Sackmann, Kai W. Szeto, Paul M. Lebel, Brandon R. Bruhn, Keith J. Breinlinger, Eric D. Hobbs, Andrew W. McFarland, J. Tanner Nevill, Xiaohua Wang
  • Publication number: 20230313107
    Abstract: Cartridge for manufacturing a population of cells suitable for formulation as a cellular therapeutic are disclosed herein, along with systems for operating the cartridges and performing methods to generate the population of cells suitable for formulation as a cellular therapeutic. The population of cells suitable for formulation as a cellular therapeutic can be T-cells, including CAR T-cells. The systems and methods can be largely automated.
    Type: Application
    Filed: December 28, 2022
    Publication date: October 5, 2023
    Applicant: BERKELEY LIGHTS, INC.
    Inventors: Andrew W. McFarland, Peter J. Beemiller, Guido K. Stadler, Alexander J. Mastroianni, Joshua J. Cardiel Rivera, Darcy K. Kelly-Greene, Jonathan Cloud Dragon Hubbard, Natalie C. Marks, Long Van Le, Ke-Chih Lin
  • Publication number: 20230242860
    Abstract: Incubators including an enclosure with an internal chamber configured to support a cell culture plate comprising a plurality of wells are disclosed. The enclosure includes a plurality of openings configured to allow access to the wells. The incubators include a sealing element configured to seal the plurality of openings in the enclosure. The sealing element comprises a plurality of openings corresponding to at least a subset of the plurality of openings in the enclosure. Access to the internal chamber can be provided by aligning the plurality of openings in the sealing element with the plurality of openings in the enclosure. Methods for using the incubators are also provided.
    Type: Application
    Filed: September 29, 2022
    Publication date: August 3, 2023
    Inventors: Russell A. NEWSTROM, Andrew W. MCFARLAND, Darcy K. KELLY-GREENE, J. Tanner NEVILL, Gang F. WANG
  • Publication number: 20230182136
    Abstract: In situ-generated microfluidic isolation structures incorporating a solidified polymer network, methods of preparation and use, compositions and kits therefor are described. The ability to introduce in real time, a variety of isolating structures including pens and barriers offers improved methods of micro-object manipulation in microfluidic devices. The in situ-generated isolation structures may be permanently or temporarily installed.
    Type: Application
    Filed: February 3, 2023
    Publication date: June 15, 2023
    Applicant: BERKELEY LIGHTS, INC.
    Inventors: Kristin G. Beaumont, Non-Linda Ding, Volker L.S. Kurz, Troy A. Lionberger, Randall D. Lowe, JR., Daniele Malleo, Andrew W. McFarland, J. Tanner Nevill, Xiaohua Wang
  • Patent number: 11666913
    Abstract: In situ-generated microfluidic isolation structures incorporating a solidified polymer network, methods of preparation and use, compositions and kits therefor are described. The ability to introduce in real time, a variety of isolating structures including pens and barriers offers improved methods of micro-object manipulation in microfluidic devices. The in situ-generated isolation structures may be permanently or temporarily installed.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: June 6, 2023
    Assignee: BERKELEY LIGHTS, INC
    Inventors: Kristin G. Beaumont, Nan-Linda Ding, Volker L. S. Kurz, Troy A. Lionberger, Randall D. Lowe, Jr., Daniele Malleo, Andrew W. McFarland, J. Tanner Nevill, Xiaohua Wang
  • Publication number: 20220356429
    Abstract: Systems, methods and kits are described for culturing one or more biological cells in a microfluidic device, including provision of nutrients and gaseous components configured to enhance cell growth, viability, portability, or any combination thereof. In some embodiments, culturing a single cell may produce a clonal population in the microfluidic device.
    Type: Application
    Filed: May 12, 2022
    Publication date: November 10, 2022
    Inventors: Randall D. LOWE, JR., Kristin G. BEAUMONT, Aathavan KARUNAKARAN, Natalie C. MARKS, Jason M. MCEWEN, Mark P. WHITE, J. Tanner NEVILL, Gang F. WANG, Andrew W. MCFARLAND, Daniele Malleo, Keith J. BREINLINGER, Xiao GUAN, Kevin T. CHAPMAN
  • Patent number: 11492584
    Abstract: Incubators including an enclosure with an internal chamber configured to support a cell culture plate comprising a plurality of wells are disclosed. The enclosure includes a plurality of openings configured to allow access to the wells. The incubators include a sealing element configured to seal the plurality of openings in the enclosure. The sealing element comprises a plurality of openings corresponding to at least a subset of the plurality of openings in the enclosure. Access to the internal chamber can be provided by aligning the plurality of openings in the sealing element with the plurality of openings in the enclosure. Methods for using the incubators are also provided.
    Type: Grant
    Filed: August 9, 2019
    Date of Patent: November 8, 2022
    Assignee: Berkeley Lights, Inc.
    Inventors: Russell A. Newstrom, Andrew W. McFarland, Darcy K. Kelly-Greene, J. Tanner Nevill, Gang F. Wang
  • Publication number: 20220325240
    Abstract: Cartridges for manufacturing a population of cells suitable for formulation as a cellular therapeutic are disclosed herein, along with systems and instruments for operating the cartridges and performing methods to generate the population of cells suitable for formulation as a cellular therapeutic. The population of cells suitable for formulation as a cellular therapeutic can be immunological cells, such as T lymphocytes, including endogenous T cells (ETCs), tumor infiltrating lymphocytes (TILs), CAR T-cells, TCR engineered T-cells, or otherwise engineered T-cells. The systems and methods can be largely automated.
    Type: Application
    Filed: January 12, 2022
    Publication date: October 13, 2022
    Inventors: Andrew W. McFarland, Peter J. Beemiller, Guido K. Stadler, Alexander J. Mastroianni, Joshua J. Cardiel Rivera, Darcy K. Kelly-Greene, Jonathan Cloud Dragon Hubbard, Natalie C. Marks, Long Van Le, Ke-Chih Lin
  • Patent number: 11434462
    Abstract: Incubators are disclosed which include an enclosure with an internal chamber configured to support a cell culture plate and provide an environment suitable for maintaining and/or culturing biological cells. The enclosure can include one or more openings configured to allow access to the cell culture plate. The incubators can further include a structure having a plurality of openings configured to be aligned with a corresponding plurality of wells in the cell culture plate, and a sealing element configured to moveably seal the plurality of openings in the structure. The sealing element can comprise a plurality of openings corresponding to at least a subset of the plurality of openings of the structure. Access to the internal chamber can be provided by aligning the plurality of openings in the sealing element with the plurality of openings in the structure. Methods for using the incubators are also provided.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: September 6, 2022
    Assignee: Berkeley Lights, Inc.
    Inventors: Darcy K. Kelly-Greene, Russell A. Newstrom, Andrew W. McFarland, J. Tanner Nevill, Gang F. Wang
  • Patent number: 11365381
    Abstract: Systems, methods and kits are described for culturing one or more biological cells in a microfluidic device, including provision of nutrients and gaseous components configured to enhance cell growth, viability, portability, or any combination thereof. In some embodiments, culturing a single cell may produce a clonal population in the microfluidic device.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: June 21, 2022
    Assignee: Berkeley Lights, Inc.
    Inventors: Randall D. Lowe, Jr., Kristin G. Beaumont, Aathavan Karunakaran, Natalie C. Marks, Jason M. McEwen, Mark P. White, J. Tanner Nevill, Gang F. Wang, Andrew W. McFarland, Daniele Malleo, Keith J. Breinlinger, Xiao Guan, Kevin T. Chapman
  • Patent number: 11192108
    Abstract: A microfluidic device can comprise a plurality of interconnected microfluidic elements. A plurality of actuators can be positioned abutting, immediately adjacent to, and/or attached to deformable surfaces of the microfluidic elements. The actuators can be selectively actuated and de-actuated to create directed flows of a fluidic medium in the microfluidic (or nanofluidic) device. Further, the actuators can be selectively actuated and de-actuated to create localized flows of a fluidic medium in the microfluidic device to move reagents and/or micro-objects in the microfluidic device.
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: December 7, 2021
    Assignee: Berkeley Lights, Inc.
    Inventors: Keith J. Breinlinger, Andrew W. McFarland, J. Tanner Nevill
  • Publication number: 20210368781
    Abstract: A method of processing and storing biological cells includes introducing a flowable medium into a microfluidic device, the flowable medium including biological cells; sequestering one or more biological cells from the flowable medium in one or more isolation regions of the microfluidic device; and freezing the microfluidic device including the one or more biological cells sequestered therein.
    Type: Application
    Filed: April 12, 2021
    Publication date: December 2, 2021
    Applicant: BERKELEY LIGHTS, INC.
    Inventors: Mark P. White, Kevin T. Chapman, Andrew W. McFarland, Eric D. Hobbs, Randall D. Lowe, JR.
  • Patent number: 11097271
    Abstract: A microfluidic device can comprise a plurality of interconnected microfluidic elements. A plurality of actuators can be positioned abutting, immediately adjacent to, and/or attached to deformable surfaces of the microfluidic elements. The actuators can be selectively actuated and de-actuated to create directed flows of a fluidic medium in the microfluidic (or nanofluidic) device. Further, the actuators can be selectively actuated and de-actuated to create localized flows of a fluidic medium in the microfluidic device to move reagents and/or micro-objects in the microfluidic device.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: August 24, 2021
    Assignee: Berkeley Lights, Inc
    Inventors: Keith J. Breinlinger, Andrew W. McFarland, J. Tanner Nevill
  • Patent number: 10973227
    Abstract: A method of processing and storing biological cells includes introducing a flowable medium into a microfluidic device, the flowable medium including biological cells; sequestering one or more biological cells from the flowable medium in one or more isolation regions of the microfluidic device; and freezing the microfluidic device including the one or more biological cells sequestered therein.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: April 13, 2021
    Assignee: Berkeley Lights, Inc.
    Inventors: Mark P. White, Kevin T. Chapman, Andrew W. McFarland, Eric D. Hobbs, Randall D. Lowe, Jr.
  • Publication number: 20210102150
    Abstract: Apparatuses and methods are described for the use of optically driven bubble, convective and displacing fluidic flow to provide motive force in microfluidic devices. Alternative motive modalities are useful to selectively dislodge and displace micro-objects, including biological cells, from a variety of locations within the enclosure of a microfluidic device.
    Type: Application
    Filed: October 12, 2020
    Publication date: April 8, 2021
    Inventors: Volker L.S. Kurz, Troy A. Lionberger, Eric K. Sackmann, Kai W. Szeto, Paul M. Lebel, Brandon R. Bruhn, Keith J. Breinlinger, Eric D. Hobbs, Andrew W. McFarland, J. Tanner Nevill, Xiaohua Wang