Patents by Inventor Andrew Y. Kim

Andrew Y. Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8945975
    Abstract: In some embodiments of the invention, a device includes a first semiconductor layer, a second semiconductor layer, a third semiconductor layer, and a semiconductor structure comprising a III-nitride light emitting layer disposed between an n-type region and a p-type region. The second semiconductor layer is disposed between the first semiconductor layer and the third semiconductor layer. The third semiconductor layer is disposed between the second semiconductor layer and the light emitting layer. A difference between the in-plane lattice constant of the first semiconductor layer and the bulk lattice constant of the third semiconductor layer is no more than 1%. A difference between the in-plane lattice constant of the first semiconductor layer and the bulk lattice constant of the second semiconductor layer is at least 1%. The third semiconductor layer is at least partially relaxed.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: February 3, 2015
    Assignees: Koninklijke Philips N.V., Philips Lumileds Lighting Company LLC
    Inventors: Andrew Y. Kim, Patrick N. Grillot
  • Publication number: 20140162389
    Abstract: In some embodiments of the invention, a device includes a first semiconductor layer, a second semiconductor layer, a third semiconductor layer, and a semiconductor structure comprising a III-nitride light emitting layer disposed between an n-type region and a p-type region. The second semiconductor layer is disposed between the first semiconductor layer and the third semiconductor layer. The third semiconductor layer is disposed between the second semiconductor layer and the light emitting layer. A difference between the in-plane lattice constant of the first semiconductor layer and the bulk lattice constant of the third semiconductor layer is no more than 1%. A difference between the in-plane lattice constant of the first semiconductor layer and the bulk lattice constant of the second semiconductor layer is at least 1%. The third semiconductor layer is at least partially relaxed.
    Type: Application
    Filed: February 12, 2014
    Publication date: June 12, 2014
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Andrew Y. Kim, Patrick N. Grillot
  • Patent number: 8692261
    Abstract: In some embodiments of the invention, a device includes a first semiconductor layer, a second semiconductor layer, a third semiconductor layer, and a semiconductor structure comprising a III-nitride light emitting layer disposed between an n-type region and a p-type region. The second semiconductor layer is disposed between the first semiconductor layer and the third semiconductor layer. The third semiconductor layer is disposed between the second semiconductor layer and the light emitting layer. A difference between the in-plane lattice constant of the first semiconductor layer and the bulk lattice constant of the third semiconductor layer is no more than 1%. A difference between the in-plane lattice constant of the first semiconductor layer and the bulk lattice constant of the second semiconductor layer is at least 1%. The third semiconductor layer is at least partially relaxed.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: April 8, 2014
    Assignees: Koninklijke Philips N.V., Philips Lumileds Lighting Company, LLC
    Inventors: Andrew Y. Kim, Patrick N. Grillot
  • Patent number: 8536022
    Abstract: A method according to embodiments of the invention includes providing an epitaxial structure comprising a donor layer and a strained layer. The epitaxial structure is treated to cause the strained layer to relax. Relaxation of the strained layer causes an in-plane lattice constant of the donor layer to change.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: September 17, 2013
    Assignee: Koninklijke Philips N.V.
    Inventor: Andrew Y. Kim
  • Publication number: 20120264248
    Abstract: A semiconductor structure comprises a III-nitride light emitting layer disposed between an n-type region and a p-type region. The semiconductor structure further comprises a curvature control layer grown on a first layer. The curvature control layer is disposed between the n-type region and the first layer. The curvature control layer has a theoretical a-lattice constant less than the theoretical a-lattice constant of GaN. The first layer is a substantially single crystal layer.
    Type: Application
    Filed: June 29, 2012
    Publication date: October 18, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Linda T. ROMANO, Parijat Pramil DEB, Andrew Y. Kim, John F. KAEDING
  • Publication number: 20110284993
    Abstract: A method according to embodiments of the invention includes providing an epitaxial structure comprising a donor layer and a strained layer. The epitaxial structure is treated to cause the strained layer to relax. Relaxation of the strained layer causes an in-plane lattice constant of the donor layer to change.
    Type: Application
    Filed: May 19, 2010
    Publication date: November 24, 2011
    Applicants: PHILIPS LUMILEDS LIGHTING COMPANY, LLC, KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventor: Andrew Y. KIM
  • Publication number: 20110284890
    Abstract: In some embodiments of the invention, a device includes a first semiconductor layer, a second semiconductor layer, a third semiconductor layer, and a semiconductor structure comprising a III-nitride light emitting layer disposed between an n-type region and a p-type region. The second semiconductor layer is disposed between the first semiconductor layer and the third semiconductor layer. The third semiconductor layer is disposed between the second semiconductor layer and the light emitting layer. A difference between the in-plane lattice constant of the first semiconductor layer and the bulk lattice constant of the third semiconductor layer is no more than 1%. A difference between the in-plane lattice constant of the first semiconductor layer and the bulk lattice constant of the second semiconductor layer is at least 1%. The third semiconductor layer is at least partially relaxed.
    Type: Application
    Filed: May 19, 2010
    Publication date: November 24, 2011
    Applicants: PHILIPS LUMILEDS LIGHTING COMPANY, LLC, KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Andrew Y. KIM, Patrick N. GRILLOT
  • Publication number: 20110057213
    Abstract: A semiconductor structure comprises a III-nitride light emitting layer disposed between an n-type region and a p-type region. The semiconductor structure further comprises a curvature control layer grown on a first layer. The curvature control layer is disposed between the n-type region and the first layer. The curvature control layer has a theoretical a-lattice constant less than the theoretical a-lattice constant of GaN. The first layer is a substantially single crystal layer.
    Type: Application
    Filed: September 8, 2009
    Publication date: March 10, 2011
    Applicants: KONINKLIJKE PHILIPS ELECTRONICS N.V., PHILIPS LUMILEDS LIGHTING COMPANY, LLC
    Inventors: Linda T. ROMANO, Parijat Pramil DEB, Andrew Y. KIM, John F. KAEDING
  • Patent number: 7633097
    Abstract: A III-nitride light emitting device is grown on a textured substrate, in order to reduce the amount of total internal reflection at the interface between the substrate and the III-nitride layers. In some embodiments, the device includes a first growth region substantially free of voids, and a second growth region that improves the material quality such that high quality layers can be grown over the first and second regions.
    Type: Grant
    Filed: September 23, 2004
    Date of Patent: December 15, 2009
    Assignee: Philips Lumileds Lighting Company, LLC
    Inventors: Andrew Y. Kim, Steven A. Maranowski
  • Patent number: 6805744
    Abstract: A method of forming a semiconductor structure including providing a single crystal semiconductor substrate of GaP, and fabricating a graded composition buffer including a plurality of epitaxial semiconductor Inx(AlyGa1−y)1−xP alloy layers. The buffer includes a first alloy layer immediately contacting the substrate having a lattice constant that is nearly identical to that of the substrate, subsequent alloy layers having lattice constants that differ from adjacent layers by less than 1%, and a final alloy layer having a lattice constant that is substantially different from the substrate. The growth temperature of the final alloy layer is at least 20° C. less than the growth temperature of the first alloy layer.
    Type: Grant
    Filed: December 13, 2001
    Date of Patent: October 19, 2004
    Assignee: Massachusetts Institute of Technology
    Inventors: Andrew Y. Kim, Eugene A. Fitzgerald
  • Patent number: 6635904
    Abstract: A smoothing structure containing indium is formed between the substrate and the active region of a III-nitride light emitting device to improve the surface characteristics of the device layers. In some embodiments, the smoothing structure is a single layer, separated from the active region by a spacer layer which typically does not contain indium. The smoothing layer contains a composition of indium lower than the active region, and is typically deposited at a higher temperature than the active region. The spacer layer is typically deposited while reducing the temperature in the reactor from the smoothing layer deposition temperature to the active region deposition temperature. In other embodiments, a graded smoothing region is used to improve the surface characteristics. The smoothing region may have a graded composition, graded dopant concentration, or both.
    Type: Grant
    Filed: March 29, 2001
    Date of Patent: October 21, 2003
    Assignee: Lumileds Lighting U.S., LLC
    Inventors: Werner K. Goetz, Michael D. Camras, Nathan F. Gardner, R. Scott Kern, Andrew Y. Kim, Stephen A. Stockman
  • Patent number: 6489636
    Abstract: A smoothing structure containing indium is formed between the substrate and the active region of a III-nitride light emitting device to improve the surface characteristics of the device layers. In some embodiments, the smoothing structure is a single layer, separated from the active region by a spacer layer which typically does not contain indium. The smoothing layer contains a composition of indium lower than the active region, and is typically deposited at a higher temperature than the active region. The spacer layer is typically deposited while reducing the temperature in the reactor from the smoothing layer deposition temperature to the active region deposition temperature. In other embodiments, a graded smoothing region is used to improve the surface characteristics. The smoothing region may have a graded composition, graded dopant concentration, or both.
    Type: Grant
    Filed: March 29, 2001
    Date of Patent: December 3, 2002
    Assignee: LumiLeds Lighting U.S., LLC
    Inventors: Werner K. Goetz, Michael D. Camras, Nathan F. Gardner, R. Scott Kern, Andrew Y. Kim, Stephen A. Stockman
  • Publication number: 20020171092
    Abstract: A smoothing structure containing indium is formed between the substrate and the active region of a III-nitride light emitting device to improve the surface characteristics of the device layers. In some embodiments, the smoothing structure is a single layer, separated from the active region by a spacer layer which typically does not contain indium. The smoothing layer contains a composition of indium lower than the active region, and is typically deposited at a higher temperature than the active region. The spacer layer is typically deposited while reducing the temperature in the reactor from the smoothing layer deposition temperature to the active region deposition temperature. In other embodiments, a graded smoothing region is used to improve the surface characteristics. The smoothing region may have a graded composition, graded dopant concentration, or both.
    Type: Application
    Filed: March 29, 2001
    Publication date: November 21, 2002
    Inventors: Werner K. Goetz, Michael D. Camras, Nathan F. Gardner, R. Scott Kern, Andrew Y. Kim, Stephen A. Stockman
  • Publication number: 20020171091
    Abstract: A smoothing structure containing indium is formed between the substrate and the active region of a III-nitride light emitting device to improve the surface characteristics of the device layers. In some embodiments, the smoothing structure is a single layer, separated from the active region by a spacer layer which typically does not contain indium. The smoothing layer contains a composition of indium lower than the active region, and is typically deposited at a higher temperature than the active region. The spacer layer is typically deposited while reducing the temperature in the reactor from the smoothing layer deposition temperature to the active region deposition temperature. In other embodiments, a graded smoothing region is used to improve the surface characteristics. The smoothing region may have a graded composition, graded dopant concentration, or both.
    Type: Application
    Filed: March 29, 2001
    Publication date: November 21, 2002
    Inventors: Werner K. Goetz, Michael D. Camras, Nathan F. Gardner, R. Scott Kern, Andrew Y. Kim, Stephen A. Stockman
  • Publication number: 20020144645
    Abstract: A method of forming a semiconductor structure including providing a single crystal semiconductor substrate of GaP, and fabricating a graded composition buffer including a plurality of epitaxial semiconductor Inx(AlyGa1−y)1−xP alloy layers. The buffer includes a first alloy layer immediately contacting the substrate having a lattice constant that is nearly identical to that of the substrate, subsequent alloy layers having lattice constants that differ from adjacent layers by less than 1%, and a final alloy layer having a lattice constant that is substantially different from the substrate. The growth temperature of the final alloy layer is at least 20° C. less than the growth temperature of the first alloy layer.
    Type: Application
    Filed: December 13, 2001
    Publication date: October 10, 2002
    Inventors: Andrew Y. Kim, Eugene A. Fitzgerald
  • Publication number: 20010047751
    Abstract: A method of forming a semiconductor structure including providing a single crystal semiconductor substrate of GaP, and fabricating a graded composition buffer including a plurality of epitaxial semiconductor Inx(AlyGa1-y)1-xP alloy layers. The buffer includes a first alloy layer immediately contacting the substrate having a lattice constant that is nearly identical to that of the substrate, subsequent alloy layers having lattice constants that differ from adjacent layers by less than 1%, and a final alloy layer having a lattice constant that is substantially different from the substrate. The growth temperature of the final alloy layer is at least 20° C. less than the growth temperature of the first alloy layer.
    Type: Application
    Filed: November 24, 1999
    Publication date: December 6, 2001
    Inventors: ANDREW Y. KIM, EUGENE A. FITZGERALD