Patents by Inventor Andrew Y. Ng

Andrew Y. Ng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11798159
    Abstract: Systems and methods for radiology image classification from noisy images in accordance with embodiments of the invention are illustrated. One embodiment includes noisy image classification device, including a processor, camera circuitry, and a memory containing a noisy image classification application, where the noisy image classification application directs the processor to obtain image data describing a first image taken of a second image using the camera circuitry, where the second image was produced by a medical imaging device, and where the first image is a noisy version of the second image, classify the image data using a neural network trained to be robust to noise, generate an investigation recommendation based on the classification, and provide the investigation recommendation via a display.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: October 24, 2023
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Sharon Zhou, Andrew Y. Ng, Pranav Rajpurkar, Mark Sabini, Chris Wang, Nguyet Minh Phu, Amirhossein Kiani, Jeremy Irvin, Matthew Lungren
  • Publication number: 20210089840
    Abstract: Systems and methods for radiology image classification from noisy images in accordance with embodiments of the invention are illustrated. One embodiment includes noisy image classification device, including a processor, camera circuitry, and a memory containing a noisy image classification application, where the noisy image classification application directs the processor to obtain image data describing a first image taken of a second image using the camera circuitry, where the second image was produced by a medical imaging device, and where the first image is a noisy version of the second image, classify the image data using a neural network trained to be robust to noise, generate an investigation recommendation based on the classification, and provide the investigation recommendation via a display.
    Type: Application
    Filed: September 18, 2020
    Publication date: March 25, 2021
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Sharon Zhou, Andrew Y. Ng, Pranav Rajpurkar, Mark Sabini, Chris Wang, Nguyet Minh Phu, Amirhossein Kiani, Jeremy Irvin, Matthew Lungren
  • Patent number: 10540957
    Abstract: Presented herein are embodiments of state-of-the-art speech recognition systems developed using end-to-end deep learning. In embodiments, the model architecture is significantly simpler than traditional speech systems, which rely on laboriously engineered processing pipelines; these traditional systems also tend to perform poorly when used in noisy environments. In contrast, embodiments of the system do not need hand-designed components to model background noise, reverberation, or speaker variation, but instead directly learn a function that is robust to such effects. A phoneme dictionary, nor even the concept of a “phoneme,” is needed. Embodiments include a well-optimized recurrent neural network (RNN) training system that can use multiple GPUs, as well as a set of novel data synthesis techniques that allows for a large amount of varied data for training to be efficiently obtained.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: January 21, 2020
    Assignee: BAIDU USA LLC
    Inventors: Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Gregory Diamos, Erich Elsen, Ryan Prenger, Sanjeev Satheesh, Shubhabrata Sengupta, Adam Coates, Andrew Y. Ng
  • Publication number: 20160171974
    Abstract: Presented herein are embodiments of state-of-the-art speech recognition systems developed using end-to-end deep learning. In embodiments, the model architecture is significantly simpler than traditional speech systems, which rely on laboriously engineered processing pipelines; these traditional systems also tend to perform poorly when used in noisy environments. In contrast, embodiments of the system do not need hand-designed components to model background noise, reverberation, or speaker variation, but instead directly learn a function that is robust to such effects. A phoneme dictionary, nor even the concept of a “phoneme,” is needed. Embodiments include a well-optimized recurrent neural network (RNN) training system that can use multiple GPUs, as well as a set of novel data synthesis techniques that allows for a large amount of varied data for training to be efficiently obtained.
    Type: Application
    Filed: June 9, 2015
    Publication date: June 16, 2016
    Applicant: BAIDU USA LLC
    Inventors: Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Gregory Diamos, Erich Elsen, Ryan Prenger, Sanjeev Satheesh, Shubhabrata Sengupta, Adam Coates, Andrew Y. Ng
  • Patent number: 8477246
    Abstract: Methods, systems, products and devices are implemented for editing video image frames. According to one such method, image content is embedded into video. A selection input is received for a candidate location in a video frame of the video. The candidate location is traced in subsequent video frames of the video by approximating three-dimensional camera motion between two frames using a model that compensates for camera rotations, camera translations and zooming, and by optimizing the approximation using statistical modeling of three-dimensional camera motion between video frames. Image content is embedded in the candidate location in the subsequent video frames of the video based upon the tracking thereof.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: July 2, 2013
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ashutosh Saxena, Siddharth Batra, Andrew Y. Ng
  • Patent number: 8472699
    Abstract: Three-dimensional image data is generated. According to an example embodiment, three-dimensional depth information is estimated from a still image. A set of monocular images and their corresponding ground-truth depth maps are used to determine a relationship between monocular image features and the depth of image points. For different points in a particular image, the determined relationship is used together with local and global image features including monocular cues to determine relative depths of the points.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: June 25, 2013
    Assignee: Board of Trustees of the Leland Stanford Junior University
    Inventors: Andrew Y. Ng, Ashutosh Saxena, Sung Hwan Chung, Min Sun
  • Publication number: 20100067865
    Abstract: Methods, systems, products and devices are implemented for editing video image frames. According to one such method, image content is embedded into video. A selection input is received for a candidate location in a video frame of the video. The candidate location is traced in subsequent video frames of the video by approximating three-dimensional camera motion between two frames using a model that compensates for camera rotations, camera translations and zooming, and by optimizing the approximation using statistical modeling of three-dimensional camera motion between video frames. Image content is embedded in the candidate location in the subsequent video frames of the video based upon the tracking thereof.
    Type: Application
    Filed: July 9, 2009
    Publication date: March 18, 2010
    Inventors: Ashutosh Saxena, Siddharth Batra, Andrew Y. Ng
  • Publication number: 20080137989
    Abstract: Three-dimensional image data is generated. According to an example embodiment, three-dimensional depth information is estimated from a still image. A set of monocular images and their corresponding ground-truth depth maps are used to determine a relationship between monocular image features and the depth of image points. For different points in a particular image, the determined relationship is used together with local and global image features including monocular cues to determine relative depths of the points.
    Type: Application
    Filed: November 21, 2007
    Publication date: June 12, 2008
    Inventors: Andrew Y. Ng, Ashutosh Saxena, Sung Hwan Chung, Min Sun