Patents by Inventor Andrew Yeoh

Andrew Yeoh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230260908
    Abstract: Semiconductor devices and methods of manufacturing the same are described. The method includes forming distinct and separate bottom dielectric isolation layers underneath the source/drain and underneath the gate of a gate all around device. Selectively remove of the bottom dielectric isolation layer underneath the source/drain results in better backside power rail (BPR) via alignment to the source/drain epi and reduces reliability and gate-shorting problems.
    Type: Application
    Filed: February 7, 2023
    Publication date: August 17, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Andrew Yeoh, Benjamin Colombeau, Balasubramanian Pranatharthiharan, Ashish Pal, El Mehdi Bazizi
  • Publication number: 20230260909
    Abstract: Semiconductor devices and methods of manufacturing the same are described. The method includes forming a diffusion break opening on the backside and filling with a diffusion break material to serve as a planarization stop. In some embodiments, a single diffusion break opening is formed. In other embodiments, a mixed diffusion break opening is formed.
    Type: Application
    Filed: February 7, 2023
    Publication date: August 17, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Andrew Yeoh, Benjamin Colombeau, Balasubramanian Pranatharthiharan, El Mehdi Bazizi, Ashish Pal
  • Publication number: 20230061392
    Abstract: Semiconductor devices and methods of manufacturing the same are described. A silicon wafer is provided and a buried etch stop layer is formed on the silicon wafer. The wafer is then subjected to device and front-end processing. After front-end processing, the wafer undergoes hybrid bonding, and then the wafer is thinned. To thin the wafer, the silicon substrate layer, which has a starting first thickness, is ground to a second thickness, the second thickness less than the first thickness. After grinding, the silicon wafer is subjected to chemical mechanical planarization (CMP), followed by etching and CMP buffing, to reduce the thickness of the silicon to a third thickness, the third thickness less than the second thickness.
    Type: Application
    Filed: August 29, 2022
    Publication date: March 2, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Suketu Arun Parikh, Ashish Pal, El Mehdi Bazizi, Andrew Yeoh, Nitin K. Ingle, Arvind Sundarrajan, Guan Huei See, Martinus Maria Berkens, Sameer A. Deshpande, Balasubramanian Pranatharthiharan, Yen-Chu Yang
  • Publication number: 20230064183
    Abstract: Semiconductor devices and methods of manufacturing the same are described. The method includes front side processing to form a deep source/drain cavity and filling the cavity with a sacrificial material. The sacrificial material is then removed during processing of the backside to form a backside power rail via that is filled with a metal fill.
    Type: Application
    Filed: August 29, 2022
    Publication date: March 2, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Suketu Arun Parikh, Ashish Pal, El Mehdi Bazizi, Andrew Yeoh, Nitin K. Ingle, Arvind Sundarrajan, Guan Huei See, Martinus Maria Berkens, Sameer A. Deshpande, Balasubramanian Pranatharthiharan, Yen-Chu Yang
  • Publication number: 20230068312
    Abstract: Semiconductor devices and methods of manufacturing the same are described. Transistors are fabricated using a standard process flow. A via opening extending from the top surface of the substrate to a bottom surface of the wafer device is formed, thus allowing nano TSV for high density packaging, as well as connecting the device to the backside power rail. A metal is deposited in the via opening, and the bottom surface of the wafer device is bound to a bonding wafer. The substrate is optionally thinned, and a contact electrically connected to the metal is formed.
    Type: Application
    Filed: August 29, 2022
    Publication date: March 2, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Suketu Arun Parikh, Ashish Pal, El Mehdi Bazizi, Andrew Yeoh, Nitin K. Ingle, Arvind Sundarrajan, Guan Huei See, Martinus Maria Berkens, Sameer A. Deshpande, Balasubramanian Pranatharthiharan, Yen-Chu Yang
  • Publication number: 20230031381
    Abstract: In some embodiments, an integrated tool for opening an etch stop layer and performing metallization comprises a first chamber with a remote plasma source, a direct plasma source, and a thermal source configured to open the etch stop layer on a substrate, a second chamber of the integrated tool with dry etch processing configured to pre-clean surfaces exposed by opening the etch stop layer, a third chamber of the integrated tool configured to deposit a barrier layer on the substrate, a fourth chamber of the integrated tool configured to deposit a liner layer on the substrate, and at least one fifth chamber of the integrated tool configured to deposit metallization material on the substrate. The integrated tool may also include a vacuum transfer chamber.
    Type: Application
    Filed: July 6, 2022
    Publication date: February 2, 2023
    Inventors: Suketu PARIKH, Andrew YEOH, Tom S. CHOI, Joung Joo LEE, Nitin K. INGLE
  • Publication number: 20230035288
    Abstract: Methods open etch stop layers in an integrated environment along with metallization processes. In some embodiments, a method for opening an etch stop layer (ESL) prior to metallization may include etching the ESL with an anisotropic process using direct plasma to form helium ions that are configured to roughen the ESL for a first duration of approximately 10 seconds to approximately 30 seconds, forming aluminum fluoride on the ESL using remote plasma and nitrogen trifluoride gas for a second duration of approximately 10 seconds to approximately 30 seconds, and exposing the ESL to a gas mixture of boron trichloride, trimethylaluminum, and/or dimethylaluminum chloride at a temperature of approximately 100 degrees Celsius to approximately 350 degrees Celsius to remove aluminum fluoride from the ESL and a portion of a material of the ESL for a third duration of approximately 30 seconds to approximately 60 seconds.
    Type: Application
    Filed: July 6, 2022
    Publication date: February 2, 2023
    Inventors: Suketu PARIKH, Andrew YEOH, Tom S. CHOI, Joung Joo LEE, Nitin K. INGLE
  • Patent number: 8827550
    Abstract: Methods and apparatuses for Micro-Electro-Mechanical Systems (MEMS) resonator to monitor temperature in an integrated circuit. Fabricating the resonator in an interconnect layer provides a way to implement thermal detection means which is tolerant of manufacturing process variations. Sensor readout and control circuits can be on silicon if desired, for example, a positive feedback amplifier to form an oscillator in conjunction with the resonator and a counter to count oscillator frequency.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: September 9, 2014
    Assignee: Intel Corporation
    Inventors: Mohamed A. Abdelmoneum, Tawfik M. Rahal-Arabi, Gregory F. Taylor, Kevin J. Fischer, Andrew Yeoh
  • Publication number: 20110150031
    Abstract: Methods and apparatuses for Micro-Electro-Mechanical Systems (MEMS) resonator to monitor temperature in an integrated circuit. Fabricating the resonator in an interconnect layer provides a way to implement thermal detection means which is tolerant of manufacturing process variations. Sensor readout and control circuits can be on silicon if desired, for example, a positive feedback amplifier to form an oscillator in conjunction with the resonator and a counter to count oscillator frequency.
    Type: Application
    Filed: December 23, 2009
    Publication date: June 23, 2011
    Inventors: Mohamed A. Abdelmoneum, Tawfik M. Rahal-Arabi, Gregory F. Taylor, Kevin J. Fischer, Andrew Yeoh
  • Patent number: 7285496
    Abstract: A method for reducing the topography from CMP of metal layers during the semiconductor manufacturing process is described. Small amounts of solute are introduced into the conductive metal layer before polishing, resulting in a material with electrical conductivity and electromigration properties that are very similar or superior to that of the pure metal, while having hardness that is more closely matched to that of the surrounding oxide dielectric layers. This may allow for better control of the CMP process, with less dishing and oxide erosion a result. A secondary benefit of this invention may be the elimination of superficial damage and embedded particles in the conductive layers caused by the abrasive particles in the slurries.
    Type: Grant
    Filed: November 1, 2005
    Date of Patent: October 23, 2007
    Assignee: Intel Corporation
    Inventor: Andrew Yeoh
  • Patent number: 7145244
    Abstract: A method for reducing the topography from CMP of metal layers during the semiconductor manufacturing process is described. Small amounts of solute are introduced into the conductive metal layer before polishing, resulting in a material with electrical conductivity and electromigration properties that are very similar or superior to that of the pure metal, while having hardness that is more closely matched to that of the surrounding oxide dielectric layers. This may allow for better control of the CMP process, with less dishing and oxide erosion a result. A secondary benefit of this invention may be the elimination of superficial damage and embedded particles in the conductive layers caused by the abrasive particles in the slurries.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: December 5, 2006
    Assignee: Intel Corporation
    Inventor: Andrew Yeoh
  • Publication number: 20060246725
    Abstract: A method for reducing the topography from CMP of metal layers during the semiconductor manufacturing process is described. Small amounts of solute are introduced into the conductive metal layer before polishing, resulting in a material with electrical conductivity and electromigration properties that are very similar or superior to that of the pure metal, while having hardness that is more closely matched to that of the surrounding oxide dielectric layers. This may allow for better control of the CMP process, with less dishing and oxide erosion a result. A secondary benefit of this invention may be the elimination of superficial damage and embedded particles in the conductive layers caused by the abrasive particles in the slurries.
    Type: Application
    Filed: November 1, 2005
    Publication date: November 2, 2006
    Inventor: Andrew Yeoh
  • Patent number: 6979646
    Abstract: A method for reducing the topography from CMP of metal layers during the semiconductor manufacturing process is described. Small amounts of solute are introduced into the conductive metal layer before polishing, resulting in a material with electrical conductivity and electromigration properties that are very similar or superior to that of the pure metal, while having hardness that is more closely matched to that of the surrounding oxide dielectric layers. This may allow for better control of the CMP process, with less dishing and oxide erosion a result. A secondary benefit of this invention may be the elimination of superficial damage and embedded particles in the conductive layers caused by the abrasive particles in the slurries.
    Type: Grant
    Filed: December 29, 2000
    Date of Patent: December 27, 2005
    Assignee: Intel Corporation
    Inventor: Andrew Yeoh
  • Publication number: 20050255694
    Abstract: A method for reducing the topography from CMP of metal layers during the semiconductor manufacturing process is described. Small amounts of solute are introduced into the conductive metal layer before polishing, resulting in a material with electrical conductivity and electromigration properties that are very similar or superior to that of the pure metal, while having hardness that is more closely matched to that of the surrounding oxide dielectric layers. This may allow for better control of the CMP process, with less dishing and oxide erosion a result. A secondary benefit of this invention may be the elimination of superficial damage and embedded particles in the conductive layers caused by the abrasive particles in the slurries.
    Type: Application
    Filed: April 28, 2005
    Publication date: November 17, 2005
    Inventor: Andrew Yeoh
  • Publication number: 20050250323
    Abstract: Apparatus and methods of fabricating an under bump metallization structure including an adhesion layer abutting a conductive pad, a molybdenum-containing barrier layer abutting the adhesion layer, a wetting layer abutting the molybdenum-containing barrier layer, and high tin content solder material abutting the wetting layer. The wetting layer may be substantially subsumed in the high content solder forming an intermetallic compound layer. The molybdenum-containing barrier layer prevents the movement of tin in the high tin content solder material from migrating to dielectric layers abutting the conductive pad and potentially causing delamination and/or attacking any underlying structures, particularly copper structures, which may be present.
    Type: Application
    Filed: July 13, 2005
    Publication date: November 10, 2005
    Inventors: John Barnak, Gerald Feldewerth, Ming Fang, Kevin Lee, Tzuen-Luh Huang, Harry Liang, Seshu Sattiraju, Margherita Chang, Andrew Yeoh
  • Publication number: 20050212133
    Abstract: Apparatus and methods of fabricating an under bump metallization structure including an adhesion layer abutting a conductive pad, a molybdenum-containing barrier layer abutting the adhesion layer, a wetting layer abutting the molybdenum-containing barrier layer, and high tin content solder material abutting the wetting layer. The wetting layer may be substantially subsumed in the high content solder forming an intermetallic compound layer. The molybdenum-containing barrier layer prevents the movement of tin in the high tin content solder material from migrating to dielectric layers abutting the conductive pad and potentially causing delamination and/or attacking any underlying structures, particularly copper structures, which may be present.
    Type: Application
    Filed: March 29, 2004
    Publication date: September 29, 2005
    Inventors: John Barnak, Gerald Feldewerth, Ming Fang, Kevin Lee, Tzuen-Luh Huang, Harry Liang, Seshu Sattiraju, Margherita Chang, Andrew Yeoh
  • Patent number: 6909192
    Abstract: A method for reducing the topography from CMP of metal layers during the semiconductor manufacturing process is described. Small amounts of solute are introduced into the conductive metal layer before polishing, resulting in a material with electrical conductivity and electromigration properties that are very similar or superior to that of the pure metal, while having hardness that is more closely matched to that of the surrounding oxide dielectric layers. This may allow for better control of the CMP process, with less dishing and oxide erosion a result. A secondary benefit of this invention may be the elimination of superficial damage and embedded particles in the conductive layers caused by the abrasive particles in the slurries.
    Type: Grant
    Filed: January 9, 2002
    Date of Patent: June 21, 2005
    Assignee: Intel Corporation
    Inventor: Andrew Yeoh
  • Publication number: 20020090821
    Abstract: A method for reducing the topography from CMP of metal layers during the semiconductor manufacturing process is described. Small amounts of solute are introduced into the conductive metal layer before polishing, resulting in a material with electrical conductivity and electromigration properties that are very similar or superior to that of the pure metal, while having hardness that is more closely matched to that of the surrounding oxide dielectric layers. This may allow for better control of the CMP process, with less dishing and oxide erosion a result. A secondary benefit of this invention may be the elimination of superficial damage and embedded particles in the conductive layers caused by the abrasive particles in the slurries.
    Type: Application
    Filed: January 9, 2002
    Publication date: July 11, 2002
    Inventor: Andrew Yeoh
  • Publication number: 20020084527
    Abstract: A method for reducing the topography from CMP of metal layers during the semiconductor manufacturing process is described. Small amounts of solute are introduced into the conductive metal layer before polishing, resulting in a material with electrical conductivity and electromigration properties that are very similar or superior to that of the pure metal, while having hardness that is more closely matched to that of the surrounding oxide dielectric layers. This may allow for better control of the CMP process, with less dishing and oxide erosion a result. A secondary benefit of this invention may be the elimination of superficial damage and embedded particles in the conductive layers caused by the abrasive particles in the slurries.
    Type: Application
    Filed: December 29, 2000
    Publication date: July 4, 2002
    Inventor: Andrew Yeoh