Patents by Inventor Andrey Federov

Andrey Federov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9482763
    Abstract: One general embodiment according to the present disclosure may be formation evaluation tool for detecting radiation in a borehole in a volume of an earth formation. The tool may include a detector including a monolithic scintillation element comprising a coherent assemblage of joined fibers, wherein the fibers are made of an optically transparent scintillation media. The fibers may be at least one of i) gamma ray responsive; and ii) neutron responsive. The coherent assemblage of fibers may be a continuous mass, may be heat-joined. The fibers may be solid. The scintillation media may comprise at least one of i) organic crystalline scintillation materials, ii) amorphous glass, and iii) nanostructured glass ceramics. The coherent assemblage of fibers may be asymmetric. The coherent assemblage of fibers may surround a further scintillation media having different scintillation characteristics than the scintillation media. The scintillation element may be azimuthally sensitive.
    Type: Grant
    Filed: May 8, 2014
    Date of Patent: November 1, 2016
    Assignee: BAKER HUGHES INCORPORATED
    Inventors: Maxim Vasilyev, Toyli Anniyev, Valery N. Khabashesku, Andrey Federov, Mikhail Korjik, Gregor Chubaryan
  • Patent number: 9261624
    Abstract: An apparatus and method for detecting radiation in a borehole intersecting an earth formation. The apparatus may include a neutron sensitive scintillation media and at least one optically transparent neutron absorptive material optically coupled to the media, which may be positioned to prevent incident neutrons from reaching a neutron-shaded surface of the media, and to provide directional sensitivity. The neutron absorptive material may comprise a light guide optically coupled to the neutron sensitive scintillation media. The scintillation media may be disposed within the at least one optically transparent neutron absorptive material, which may be configured to prevent substantially all incident neutrons having an incident neutron energy below a selected energy threshold from reaching the media. The selected energy threshold may be approximately 0.2 eV. A neutron-reflecting material may be disposed within the scintillation media.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: February 16, 2016
    Assignee: BAKER HUGHES INCORPORATED
    Inventors: Maxim Vasilyev, Toyli Anniyev, Steven M. Bliven, Andrey Federov, Mikhail Korjik
  • Publication number: 20150323683
    Abstract: One general embodiment according to the present disclosure may be formation evaluation tool for detecting radiation in a borehole in a volume of an earth formation. The tool may include a detector including a monolithic scintillation element comprising a coherent assemblage of joined fibers, wherein the fibers are made of an optically transparent scintillation media. The fibers may be at least one of i) gamma ray responsive; and ii) neutron responsive. The coherent assemblage of fibers may be a continuous mass, may be heat-joined. The fibers may be solid. The scintillation media may comprise at least one of i) organic crystalline scintillation materials, ii) amorphous glass, and iii) nanostructured glass ceramics. The coherent assemblage of fibers may be asymmetric. The coherent assemblage of fibers may surround a further scintillation media having different scintillation characteristics than the scintillation media. The scintillation element may be azimuthally sensitive.
    Type: Application
    Filed: May 8, 2014
    Publication date: November 12, 2015
    Applicant: Baker Hughes Incorporated
    Inventors: Maxim Vasilyev, Toyli Anniyev, Valery N. Khabashesku, Andrey Federov, Mikhail Korjik, Gregor Chubaryan
  • Publication number: 20140367562
    Abstract: An apparatus and method for detecting radiation in a borehole intersecting an earth formation. The apparatus may include a neutron sensitive scintillation media and at least one optically transparent neutron absorptive material optically coupled to the media, which may be positioned to prevent incident neutrons from reaching a neutron-shaded surface of the media, and to provide directional sensitivity. The neutron absorptive material may comprise a light guide optically coupled to the neutron sensitive scintillation media. The scintillation media may be disposed within the at least one optically transparent neutron absorptive material, which may be configured to prevent substantially all incident neutrons having an incident neutron energy below a selected energy threshold from reaching the media. The selected energy threshold may be approximately 0.2 eV. A neutron-reflecting material may be disposed within the scintillation media.
    Type: Application
    Filed: June 14, 2013
    Publication date: December 18, 2014
    Inventors: Maxim VASILYEV, Toyli ANNIYEV, Steven M. BLIVEN, Andrey FEDEROV, Mikhail KORJIK
  • Patent number: 7888295
    Abstract: A well treatment composition is formed from an aqueous crosslinkable hydrated polymer solution. Combined with the polymer solution is a solid boric acid or borate crosslinking agent and a solid metal oxide or metal hydroxide pH buffering agent that has limited solubility (less than 100 kg/m3 at 20° C.) within the polymer solution that provides the solution with a pH of from about 8 to about 11. The composition may be introduced into a subterranean formation through a wellbore that penetrates the formation. The composition may provide at least one of shortened shear recovery time and an increase in the thermal stability of the aqueous polymer solution.
    Type: Grant
    Filed: February 8, 2007
    Date of Patent: February 15, 2011
    Assignee: Schlumberger Technology Corporation
    Inventors: Diankui Fu, Andrey Federov
  • Publication number: 20080194431
    Abstract: A well treatment composition is formed from an aqueous crosslinkable hydrated polymer solution. Combined with the polymer solution is a solid boric acid or borate crosslinking agent and a solid metal oxide or metal hydroxide pH buffering agent that has limited solubility (less than 100 kg/m3 at 20° C.) within the polymer solution that provides the solution with a pH of from about 8 to about 11. The composition may be introduced into a subterranean formation through a wellbore that penetrates the formation. The composition may provide at least one of shortened shear recovery time and an increase in the thermal stability of the aqueous polymer solution.
    Type: Application
    Filed: February 8, 2007
    Publication date: August 14, 2008
    Inventors: Diankui Fu, Andrey Federov