Patents by Inventor Andy E. Hooper
Andy E. Hooper has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11562922Abstract: Systems and methods for releasing semiconductor devices during pick and place operations are disclosed. A representative system for handling semiconductor dies comprises a support member positioned to carry at least one semiconductor die releasably attached to a support substrate. The system further includes a picking device having a pick head coupleable to a vacuum source and positioned to releasably attach to the semiconductor die at a pick station. The system still further includes a release station having a fluid delivery device coupleable to a source of release fluid, the fluid delivery device having an exit positioned to direct release fluid toward a semiconductor die carried by the support member at the release station.Type: GrantFiled: January 21, 2022Date of Patent: January 24, 2023Assignee: Micron Technology, Inc.Inventor: Andy E. Hooper
-
Publication number: 20220148906Abstract: Systems and methods for releasing semiconductor devices during pick and place operations are disclosed. A representative system for handling semiconductor dies comprises a support member positioned to carry at least one semiconductor die releasably attached to a support substrate. The system further includes a picking device having a pick head coupleable to a vacuum source and positioned to releasably attach to the semiconductor die at a pick station. The system still further includes a release station having a fluid delivery device coupleable to a source of release fluid, the fluid delivery device having an exit positioned to direct release fluid toward a semiconductor die carried by the support member at the release station.Type: ApplicationFiled: January 21, 2022Publication date: May 12, 2022Inventor: Andy E. Hooper
-
Patent number: 11232970Abstract: Systems and methods for releasing semiconductor devices during pick and place operations are disclosed. A representative system for handling semiconductor dies comprises a support member positioned to carry at least one semiconductor die releasably attached to a support substrate. The system further includes a picking device having a pick head coupleable to a vacuum source and positioned to releasably attach to the semiconductor die at a pick station. The system still further includes a release station having a fluid delivery device coupleable to a source of release fluid, the fluid delivery device having an exit positioned to direct release fluid toward a semiconductor die carried by the support member at the release station.Type: GrantFiled: June 25, 2019Date of Patent: January 25, 2022Assignee: Micron Technology, Inc.Inventor: Andy E. Hooper
-
Publication number: 20190311939Abstract: Systems and methods for releasing semiconductor devices during pick and place operations are disclosed. A representative system for handling semiconductor dies comprises a support member positioned to carry at least one semiconductor die releasably attached to a support substrate. The system further includes a picking device having a pick head coupleable to a vacuum source and positioned to releasably attach to the semiconductor die at a pick station. The system still further includes a release station having a fluid delivery device coupleable to a source of release fluid, the fluid delivery device having an exit positioned to direct release fluid toward a semiconductor die carried by the support member at the release station.Type: ApplicationFiled: June 25, 2019Publication date: October 10, 2019Inventor: Andy E. Hooper
-
Patent number: 10373857Abstract: A method of forming a plurality of semiconductor devices includes applying a tape material to a back side of a semiconductor device having a silicon layer on the back side and a circuitry layer on the front side, lasing with an infrared laser the silicon layer through the tape material, lasing with a second laser the circuitry layer, and expanding the tape material for form a plurality of semiconductor devices. The second layer may be an ultraviolet laser. The lasers may be irradiated in a pattern on the bottom side and the top side. The second layer may form a groove in the circuitry layer that does not penetrate the silicon layer. The infrared laser may cleave a portion of the silicon lattice of the silicon layer. A coating may be applied to the circuitry layer prior to being irradiated with the second laser.Type: GrantFiled: June 25, 2018Date of Patent: August 6, 2019Assignee: Micron Technology, Inc.Inventors: Andy E. Hooper, Nicholas Wade Clyde
-
Patent number: 10340173Abstract: Systems and methods for releasing semiconductor devices during pick and place operations are disclosed. A representative system for handling semiconductor dies comprises a support member positioned to carry at least one semiconductor die releasably attached to a support substrate. The system further includes a picking device having a pick head coupleable to a vacuum source and positioned to releasably attach to the semiconductor die at a pick station. The system still further incudes a release station having a fluid delivery device coupleable to a source of release fluid, the fluid delivery device having an exit positioned to direct release fluid toward a semiconductor die carried by the support member at the release station.Type: GrantFiled: October 11, 2016Date of Patent: July 2, 2019Assignee: Micron Technology, Inc.Inventor: Andy E. Hooper
-
Publication number: 20190131160Abstract: A method of forming a plurality of semiconductor devices includes applying a tape material to a back side of a semiconductor device having a silicon layer on the back side and a circuitry layer on the front side, lasing with an infrared laser the silicon layer through the tape material, lasing with a second laser the circuitry layer, and expanding the tape material for form a plurality of semiconductor devices. The second layer may be an ultraviolet laser. The lasers may be irradiated in a pattern on the bottom side and the top side. The second layer may form a groove in the circuitry layer that does not penetrate the silicon layer. The infrared laser may cleave a portion of the silicon lattice of the silicon layer. A coating may be applied to the circuitry layer prior to being irradiated with the second laser.Type: ApplicationFiled: June 25, 2018Publication date: May 2, 2019Applicant: Micron Technology, Inc.Inventors: Andy E. Hooper, Nicholas Wade Clyde
-
Patent number: 10079169Abstract: A method of forming a plurality of semiconductor devices includes applying a tape material to a back side of a semiconductor device having a silicon layer on the back side and a circuitry layer on the front side, lasing with an infrared laser the silicon layer through the tape material, lasing with a second laser the circuitry layer, and expanding the tape material for form a plurality of semiconductor devices. The second layer may be an ultraviolet laser. The lasers may be irradiated in a pattern on the bottom side and the top side. The second layer may form a groove in the circuitry layer that does not penetrate the silicon layer. The infrared laser may cleave a portion of the silicon lattice of the silicon layer. A coating may be applied to the circuitry layer prior to being irradiated with the second laser.Type: GrantFiled: October 30, 2017Date of Patent: September 18, 2018Assignee: MICRON TECHNOLOGY, INC.Inventors: Andy E. Hooper, Nicholas Wade Clyde
-
Publication number: 20180102273Abstract: Systems and methods for releasing semiconductor devices during pick and place operations are disclosed. A representative system for handling semiconductor dies comprises a support member positioned to carry at least one semiconductor die releasably attached to a support substrate. The system further includes a picking device having a pick head coupleable to a vacuum source and positioned to releasably attach to the semiconductor die at a pick station. The system still further incudes a release station having a fluid delivery device coupleable to a source of release fluid, the fluid delivery device having an exit positioned to direct release fluid toward a semiconductor die carried by the support member at the release station.Type: ApplicationFiled: October 11, 2016Publication date: April 12, 2018Inventor: Andy E. Hooper
-
Patent number: 9070656Abstract: Heat spreaders for dissipating heat from semiconductor devices comprise a contact surface located within a recess on an underside of the heat spreader, the contact surface being configured to physically and thermally attach to a semiconductor device, and a trench extending into the heat spreader adjacent to the contact surface sized and configured to receive underfill material extending from the semiconductor device into the trench. Related semiconductor device assemblies may include these heat spreaders and methods may include physically and thermally attaching these heat spreaders to semiconductor devices such that underfill material extends from a semiconductor device into the trench.Type: GrantFiled: June 12, 2013Date of Patent: June 30, 2015Assignee: Micron Technology, Inc.Inventors: Andy E. Hooper, Xiao Li, Shijian Luo
-
Publication number: 20140367844Abstract: Heat spreaders for dissipating heat from semiconductor devices comprise a contact surface located within a recess on an underside of the heat spreader, the contact surface being configured to physically and thermally attach to a semiconductor device, and a trench extending into the heat spreader adjacent to the contact surface sized and configured to receive underfill material extending from the semiconductor device into the trench. Related semiconductor device assemblies may include these heat spreader and methods may include physically and thermally attaching these heat spreaders to semiconductor devices such that underfill material extends from a semiconductor device into the trench.Type: ApplicationFiled: June 12, 2013Publication date: December 18, 2014Inventors: Andy E. Hooper, Xiao Li, Shijian Luo
-
Publication number: 20120133381Abstract: A method of performing a function on a three-dimensional semiconductor chip package as well as on individual chips in the package is disclosed. That method involves the creation of an operative relationship between a function performer and an edge feature on the chip or chips wherein the edge feature consists of one or more of an electrically conductive pad, thermally conductive pad, a probe pad, a fuse, a resistor, a capacitor, an inductor, an optical emitter, an optical receiver, a test pad, a bond pad, a contact pin, a heat dissipator, an alignment marker, a metrology feature and a function performer may be any one or more of a test probe, the laser, a programming device, an interrogation device, a loading device or a tuning device. In addition, a chip per se with edge features is disclosed along with a three-dimensional stack of such chips in either of several different configurations.Type: ApplicationFiled: November 30, 2010Publication date: May 31, 2012Applicant: ELECTRO SCIENTIFIC INDUSTRIES, INC.Inventors: Kelly BRULAND, Timothy R. WEBB, Andy E. HOOPER, John R. CARRUTHERS
-
Patent number: 8178906Abstract: A laser activated phase change device for use in an integrated circuit comprises a chalcogenide fuse configured to connect a first patterned metal line and a second patterned metal line and positioned between an inter layer dielectric and an over fuse dielectric. The fuse interconnects active semiconductor elements manufactured on a substrate. A method for activating the laser activated phase change device includes selecting a laser condition of a laser based on characteristics of the fuse and programming a phase-change of the fuse with the laser by direct photon absorption until a threshold transition temperature is met.Type: GrantFiled: January 11, 2008Date of Patent: May 15, 2012Assignee: Electro Scientific Industries, Inc.Inventors: Andy E. Hooper, Allen Kawasaki, Robert Hainsey
-
Patent number: 7977213Abstract: A solution to failure mechanisms caused by mechanical sawing of a mechanical semiconductor workpiece entails use of a laser beam to cut and remove the electrically conductive and low-k dielectric material layers from a dicing street before saw dicing to separate semiconductor devices. A laser beam forms a laser scribe region such as a channel in the electrically conductive and low-k dielectric material layers, the bottom of the channel ending on a laser energy transparent stop layer of silicon oxide lying below all of the electrically conductive and low-k dielectric material layers. The disclosed process entails selection of laser parameters such as wavelength, pulse width, and fluence that cooperate to leave the silicon oxide layer stop layer completely or nearly undamaged. A mechanical saw cuts the silicon oxide layer and all other material layers below it, as well as the substrate, to separate the semiconductor devices.Type: GrantFiled: March 31, 2010Date of Patent: July 12, 2011Assignee: Electro Scientific Industries, Inc.Inventors: Andy E. Hooper, David Barsic, Clint R. Vandergiessen, Haibin Zhang, James N. O'Brien
-
Publication number: 20090179201Abstract: A laser activated phase change device for use in an integrated circuit comprises a chalcogenide fuse configured to connect a first patterned metal line and a second patterned metal line and positioned between an inter layer dielectric and an over fuse dielectric. The fuse interconnects active semiconductor elements manufactured on a substrate. A method for activating the laser activated phase change device includes selecting a laser condition of a laser based on characteristics of the fuse and programming a phase-change of the fuse with the laser by direct photon absorption until a threshold transition temperature is met.Type: ApplicationFiled: January 11, 2008Publication date: July 16, 2009Applicant: ELECTRO SCIENTIFIC INDUSTRIES, INC.Inventors: Andy E. Hooper, Allen Kawasaki, Robert Hainsey
-
Patent number: 7132372Abstract: A method for preparing a semiconductor substrate surface (28) for semiconductor device fabrication, includes providing a semiconductor substrate (20) having a pure Ge surface layer (28) or a Ge-containing surface layer (12), such as SiGe. The semiconductor substrate (20) is cleaned using a first oxygen plasma process (14) to remove foreign matter (30) from the surface (28) of the substrate (20). The substrate surface (28) is next immersed in a hydrochloric acid solution (16) to remove additional foreign matter (30) from the surface (28) of the substrate (20). The immersion step is followed by a second oxygen plasma etch process (18), passivate the surface with a passivation layer (34), and provide for an atomically smooth surface for subsequent epitaxial or gate dielectric growth.Type: GrantFiled: July 29, 2004Date of Patent: November 7, 2006Assignee: Freescale Semiconductor, Inc.Inventors: Steven M. Smith, Diana J. Convey, Andy E. Hooper, Yi Wei