Patents by Inventor Andy Y. Tsai

Andy Y. Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11963768
    Abstract: A continuous glucose monitoring system may utilize externally sourced information regarding the physiological state and ambient environment of its user for externally calibrating sensor glucose measurements. Externally sourced factory calibration information may be utilized, where the information is generated by comparing metrics obtained from the data used to generate the sensor's glucose sensing algorithm to similar data obtained from each batch of sensors to be used with the algorithm in the future. The output sensor glucose value of a glucose sensor may also be estimated by analytically optimizing input sensor signals to accurately correct for changes in sensitivity, run-in time, glucose current dips, and other variable sensor wear effects.
    Type: Grant
    Filed: May 5, 2022
    Date of Patent: April 23, 2024
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Keith Nogueira, Peter Ajemba, Michael E. Miller, Steven C. Jacks, Jeffrey Nishida, Andy Y. Tsai, Andrea Varsavsky
  • Publication number: 20230360799
    Abstract: A method for retrospective calibration of a glucose sensor uses stored values of measured working electrode current (Isig) to calculate a final sensor glucose (SG) value retrospectively. The Isig values may be preprocessed, discrete wavelet decomposition applied. At least one machine learning model, such as, e.g., Genetic Programing (GP) and Regression Decision Tree (DT), may be used to calculate SG values based on the Isig values and the discrete wavelet decomposition. Other inputs may include, e.g., counter electrode voltage (Vcntr) and Electrochemical Impedance Spectroscopy (EIS) data. A plurality of machine learning models may be used to generate respective SG values, which are then fused to generate a fused SG. Fused SG values may be filtered to smooth the data, and blanked if necessary.
    Type: Application
    Filed: May 26, 2023
    Publication date: November 9, 2023
    Inventors: Keith Nogueira, Taly G. Engel, Benyamin Grosman, Xiaolong Li, Bradley C. Liang, Rajiv Shah, Mike C. Liu, Andy Y. Tsai, Andrea Varsavsky, Jeffrey Nishida
  • Publication number: 20230017510
    Abstract: Electrochemical impedance spectroscopy (EIS) may be used in conjunction with continuous glucose monitoring (CGM) to enable identification of valid and reliable sensor data, as well implementation of Smart Calibration algorithms.
    Type: Application
    Filed: August 22, 2022
    Publication date: January 19, 2023
    Inventors: Keith Nogueira, Taly G. Engel, Xiaolong Li, Bradley C. Liang, Rajiv Shah, Mike C. Liu, Andy Y. Tsai
  • Publication number: 20230000402
    Abstract: A continuous glucose monitoring system may utilize externally sourced information regarding the physiological state and ambient environment of its user for externally calibrating sensor glucose measurements. Externally sourced factory calibration information may be utilized, where the information is generated by comparing metrics obtained from the data used to generate the sensor's glucose sensing algorithm to similar data obtained from each batch of sensors to be used with the algorithm in the future. The output sensor glucose value of a glucose sensor may also be estimated by analytically optimizing input sensor signals to accurately correct for changes in sensitivity, run-in time, glucose current dips, and other variable sensor wear effects.
    Type: Application
    Filed: September 7, 2022
    Publication date: January 5, 2023
    Inventors: Peter Ajemba, Keith Nogueira, Jeffrey Nishida, Andy Y. Tsai
  • Patent number: 11471082
    Abstract: A continuous glucose monitoring system may employ complex redundancy to take operational advantage of disparate characteristics of two or more dissimilar, or non-identical, sensors, including, e.g., characteristics relating to hydration, stabilization, and durability of such sensors. Fusion algorithms, Electrochemical Impedance Spectroscopy (EIS), and advanced Application Specific Integrated Circuits (ASICs) may be used to implement use of such redundant glucose sensors, devices, and sensor systems in such a way as to bridge the gaps between fast start-up, sensor longevity, and accuracy of calibration-free algorithms. Systems, devices, and algorithms are described for achieving a long-wear and reliable sensor which also minimizes, or eliminates, the need for BG calibration, thereby providing a calibration-free, or near calibration-free, sensor.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: October 18, 2022
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Andrea Varsavsky, Jeffrey Nishida, Taly G. Engel, Keith Nogueira, Andy Y. Tsai, Peter Ajemba
  • Patent number: 11445951
    Abstract: A continuous glucose monitoring system may utilize externally sourced information regarding the physiological state and ambient environment of its user for externally calibrating sensor glucose measurements. Externally sourced factory calibration information may be utilized, where the information is generated by comparing metrics obtained from the data used to generate the sensor's glucose sensing algorithm to similar data obtained from each batch of sensors to be used with the algorithm in the future. The output sensor glucose value of a glucose sensor may also be estimated by analytically optimizing input sensor signals to accurately correct for changes in sensitivity, run-in time, glucose current dips, and other variable sensor wear effects.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: September 20, 2022
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Peter Ajemba, Keith Nogueira, Jeffrey Nishida, Andy Y. Tsai
  • Patent number: 11445952
    Abstract: Electrochemical impedance spectroscopy (EIS) may be used in conjunction with continuous glucose monitoring (CGM) to enable identification of valid and reliable sensor data, as well implementation of Smart Calibration algorithms.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: September 20, 2022
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Keith Nogueira, Taly G. Engel, Xiaolong Li, Bradley C. Liang, Rajiv Shah, Mike C. Liu, Andy Y. Tsai
  • Publication number: 20220273198
    Abstract: A continuous glucose monitoring system may utilize externally sourced information regarding the physiological state and ambient environment of its user for externally calibrating sensor glucose measurements. Externally sourced factory calibration information may be utilized, where the information is generated by comparing metrics obtained from the data used to generate the sensor's glucose sensing algorithm to similar data obtained from each batch of sensors to be used with the algorithm in the future. The output sensor glucose value of a glucose sensor may also be estimated by analytically optimizing input sensor signals to accurately correct for changes in sensitivity, run-in time, glucose current dips, and other variable sensor wear effects.
    Type: Application
    Filed: May 5, 2022
    Publication date: September 1, 2022
    Inventors: Keith Nogueira, Peter Ajemba, Michael E. Miller, Steven C. Jacks, Jeffrey Nishida, Andy Y. Tsai, Andrea Varsavsky
  • Patent number: 11344235
    Abstract: A continuous glucose monitoring system may utilize externally sourced information regarding the physiological state and ambient environment of its user for externally calibrating sensor glucose measurements. Externally sourced factory calibration information may be utilized, where the information is generated by comparing metrics obtained from the data used to generate the sensor's glucose sensing algorithm to similar data obtained from each batch of sensors to be used with the algorithm in the future. The output sensor glucose value of a glucose sensor may also be estimated by analytically optimizing input sensor signals to accurately correct for changes in sensitivity, run-in time, glucose current dips, and other variable sensor wear effects.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: May 31, 2022
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Keith Nogueira, Peter Ajemba, Michael E. Miller, Steven C. Jacks, Jeffrey Nishida, Andy Y. Tsai, Andrea Varsavsky
  • Publication number: 20220095964
    Abstract: A method for optional external calibration of a calibration-free glucose sensor uses values of measured working electrode current (Isig) and EIS data to calculate a final sensor glucose (SG) value. Counter electrode voltage (Vcntr) may also be used as an input. Raw Isig and Vcntr values may be preprocessed, and low-pass filtering, averaging, and/or feature generation may be applied. SG values may be generated using one or more models for predicting SG calculations. When an external blood glucose (BG) value is available, the BG value may also be used in calculating the SG values. A SG variance estimate may be calculated for each predicted SG value and modulated, with the modulated SG values then fused to generate a fused SG. A Kalman filter, as well as error detection logic, may be applied to the fused SG value to obtain a final SG, which is then displayed to the user.
    Type: Application
    Filed: December 9, 2021
    Publication date: March 31, 2022
    Inventors: Jeffrey Nishida, Andrea Varsavsky, Taly G. Engel, Keith Nogueira, Andy Y. Tsai, Peter Ajemba
  • Patent number: 11213230
    Abstract: A method for optional external calibration of a calibration-free glucose sensor uses values of measured working electrode current (Isig) and EIS data to calculate a final sensor glucose (SG) value. Counter electrode voltage (Vcntr) may also be used as an input. Raw Isig and Vcntr values may be preprocessed, and low-pass filtering, averaging, and/or feature generation may be applied. SG values may be generated using one or more models for predicting SG calculations. When an external blood glucose (BG) value is available, the BG value may also be used in calculating the SG values. A SG variance estimate may be calculated for each predicted SG value and modulated, with the modulated SG values then fused to generate a fused SG. A Kalman filter, as well as error detection logic, may be applied to the fused SG value to obtain a final SG, which is then displayed to the user.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: January 4, 2022
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Jeffrey Nishida, Andrea Varsavsky, Taly G. Engel, Keith Nogueira, Andy Y. Tsai, Peter Ajemba
  • Publication number: 20190246960
    Abstract: Electrochemical impedance spectroscopy (EIS) may be used in conjunction with continuous glucose monitoring (CGM) to enable identification of valid and reliable sensor data, as well implementation of Smart Calibration algorithms.
    Type: Application
    Filed: April 18, 2019
    Publication date: August 15, 2019
    Inventors: Keith Nogueira, Taly G. Engel, Xiaolong Li, Bradley C. Liang, Rajiv Shah, Mike C. Liu, Andy Y. Tsai
  • Publication number: 20190246961
    Abstract: Electrochemical impedance spectroscopy (EIS) may be used in conjunction with continuous glucose monitoring (CGM) to enable identification of valid and reliable sensor data, as well implementation of Smart Calibration algorithms.
    Type: Application
    Filed: April 29, 2019
    Publication date: August 15, 2019
    Inventors: Keith Nogueira, Taly G. Engel, Xiaolong Li, Bradley C. Liang, Rajiv Shah, Jaeho Kim, Mike C. Liu, Andy Y. Tsai
  • Patent number: 10327680
    Abstract: Electrochemical impedance spectroscopy (EIS) may be used in conjunction with continuous glucose monitoring (CGM) to enable identification of valid and reliable sensor data, as well implementation of Smart Calibration algorithms.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: June 25, 2019
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Keith Nogueira, Taly G. Engel, Raghavendhar Gautham, Xiaolong Li, Bradley C. Liang, Rajiv Shah, Jaeho Kim, Mike C. Liu, Andy Y. Tsai, Jeffrey Nishida
  • Patent number: 10327686
    Abstract: Electrochemical impedance spectroscopy (EIS) may be used in conjunction with continuous glucose monitoring (CGM) to enable identification of valid and reliable sensor data, as well implementation of Smart Calibration algorithms.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: June 25, 2019
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Keith Nogueira, Taly G. Engel, Xiaolong Li, Bradley C. Liang, Rajiv Shah, Jaeho Kim, Mike C. Liu, Andy Y. Tsai
  • Publication number: 20190175079
    Abstract: A method for optional external calibration of a calibration-free glucose sensor uses values of measured working electrode current (Isig) and EIS data to calculate a final sensor glucose (SG) value. Counter electrode voltage (Vcntr) may also be used as an input. Raw Isig and Vcntr values may be preprocessed, and low-pass filtering, averaging, and/or feature generation may be applied. SG values may be generated using one or more models for predicting SG calculations. When an external blood glucose (BG) value is available, the BG value may also be used in calculating the SG values. A SG variance estimate may be calculated for each predicted SG value and modulated, with the modulated SG values then fused to generate a fused SG. A Kalman filter, as well as error detection logic, may be applied to the fused SG value to obtain a final SG, which is then displayed to the user.
    Type: Application
    Filed: December 13, 2017
    Publication date: June 13, 2019
    Inventors: Jeffrey Nishida, Andrea Varsavsky, Taly G. Engel, Keith Nogueira, Andy Y. Tsai, Peter Ajemba
  • Publication number: 20190175080
    Abstract: A continuous glucose monitoring system may employ complex redundancy to take operational advantage of disparate characteristics of two or more dissimilar, or non-identical, sensors, including, e.g., characteristics relating to hydration, stabilization, and durability of such sensors. Fusion algorithms, Electrochemical Impedance Spectroscopy (EIS), and advanced Application Specific Integrated Circuits (ASICs) may be used to implement use of such redundant glucose sensors, devices, and sensor systems in such a way as to bridge the gaps between fast start-up, sensor longevity, and accuracy of calibration-free algorithms. Systems, devices, and algorithms are described for achieving a long-wear and reliable sensor which also minimizes, or eliminates, the need for BG calibration, thereby providing a calibration-free, or near calibration-free, sensor.
    Type: Application
    Filed: December 13, 2017
    Publication date: June 13, 2019
    Inventors: Andrea Varsavsky, Jeffrey Nishida, Taly G. Engel, Keith Nogueira, Andy Y. Tsai, Peter Ajemba
  • Publication number: 20190076066
    Abstract: A continuous glucose monitoring system may utilize externally sourced information regarding the physiological state and ambient environment of its user for externally calibrating sensor glucose measurements. Externally sourced factory calibration information may be utilized, where the information is generated by comparing metrics obtained from the data used to generate the sensor's glucose sensing algorithm to similar data obtained from each batch of sensors to be used with the algorithm in the future. The output sensor glucose value of a glucose sensor may also be estimated by analytically optimizing input sensor signals to accurately correct for changes in sensitivity, run-in time, glucose current dips, and other variable sensor wear effects.
    Type: Application
    Filed: August 30, 2018
    Publication date: March 14, 2019
    Inventors: Peter Ajemba, Keith Nogueira, Jeffrey Nishida, Andy Y. Tsai
  • Publication number: 20190076070
    Abstract: A continuous glucose monitoring system may utilize externally sourced information regarding the physiological state and ambient environment of its user for externally calibrating sensor glucose measurements. Externally sourced factory calibration information may be utilized, where the information is generated by comparing metrics obtained from the data used to generate the sensor's glucose sensing algorithm to similar data obtained from each batch of sensors to be used with the algorithm in the future. The output sensor glucose value of a glucose sensor may also be estimated by analytically optimizing input sensor signals to accurately correct for changes in sensitivity, run-in time, glucose current dips, and other variable sensor wear effects.
    Type: Application
    Filed: August 30, 2018
    Publication date: March 14, 2019
    Inventors: Keith Nogueira, Peter Ajemba, Michael E. Miller, Steven C. Jacks, Jeffrey Nishida, Andy Y. Tsai, Andrea Varsavsky
  • Publication number: 20190041345
    Abstract: Electrochemical impedance spectroscopy (EIS) may be used in conjunction with continuous glucose monitoring (CGM) to enable identification of valid and reliable sensor data, as well implementation of Smart Calibration algorithms.
    Type: Application
    Filed: October 11, 2018
    Publication date: February 7, 2019
    Inventors: KEITH NOGUEIRA, TALY G. ENGEL, XIAOLONG LI, BRADLEY C. LIANG, RAJIV SHAH, JAEHO KIM, MIKE C. LIU, ANDY Y. TSAI, ANDREA VARSAVSKY, FEI YU