Patents by Inventor Ane Fernanda Beraldi Zeidler

Ane Fernanda Beraldi Zeidler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11746361
    Abstract: The present disclosure provides methods for genetically modifying microbes to produce a microbe capable of simultaneous consumption of xylose and glucose to increase the productivity output of desired chemical products. The disclosure further provides modified bacteria that are capable of simultaneous consumption of xylose and glucose, and compositions comprising the microbes.
    Type: Grant
    Filed: April 6, 2020
    Date of Patent: September 5, 2023
    Assignee: BRASKEM S.A.
    Inventors: Veronica Maria Rodege Gogola Kolling, Ane Fernanda Beraldi Zeidler, Lucas Pedersen Parizzi
  • Patent number: 11162116
    Abstract: The present disclosure relates to single and/or multi-stage, biological processes and systems for converting C5, C6, and/or disaccharide carbon sources to desirable products including monoethylene glycol (MEG) and one or more three-carbon compounds such as acetone, isopropanol or propene. The MEG and one or more three-carbon compounds described herein are useful as starting material for production of other compounds or as end products for industrial and household use. The disclosure further relates to the processes carrying out fermentations of substrates in a single phase bioreactor or in a multiphase bioreactor comprising growth and production phases. Additionally, the processes and systems described herein result in high productivity and yield of the desired products due to intermittent or continuous removal of products to avoid inhibitory effects.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: November 2, 2021
    Assignee: BRASKEM S.A.
    Inventors: Jose Geraldo Da Cruz Pradella, Ane Fernanda Beraldi Zeidler, Ana Karina Brambilla Costa
  • Patent number: 10941424
    Abstract: The present application relates to recombinant microorganisms useful in the biosynthesis of monoethylene glycol (MEG) and one or more three-carbon compounds such as acetone, isopropanol or propene. The MEG and one or more three-carbon compounds described herein are useful as starting material for production of other compounds or as end products for industrial and household use. The application further relates to recombinant microorganisms co-expressing a C2 branch pathway and a C3 branch pathway for the production of MEG and one or more three-carbon compounds. Also provided are methods of producing MEG and one or more three-carbon compounds using the recombinant microorganisms, as well as compositions comprising the recombinant microorganisms and/or optionally the products MEG and one or more three-carbon compounds.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: March 9, 2021
    Assignee: BRASKEM S.A.
    Inventors: Daniel Johannes Koch, Mateus Schreiner Lopes, Ane Fernanda Beraldi Zeidler, Lucas Pedersen Parizzi
  • Publication number: 20200318146
    Abstract: The present disclosure provides methods for genetically modifying microbes to produce a microbe capable of simultaneous consumption of xylose and glucose to increase the productivity output of desired chemical products. The disclosure further provides modified bacteria that are capable of simultaneous consumption of xylose and glucose, and compositions comprising the microbes.
    Type: Application
    Filed: April 6, 2020
    Publication date: October 8, 2020
    Inventors: Veronica Maria Rodege Gogola KOLLING, Ane Fernanda Beraldi ZEIDLER, Lucas Pedersen PARIZZI
  • Patent number: 10774348
    Abstract: The present application relates to recombinant microorganisms useful in the biosynthesis of monoethylene glycol (MEG) and one or more three-carbon compounds such as acetone, isopropanol or propene. The MEG and one or more three-carbon compounds described herein are useful as starting material for production of other compounds or as end products for industrial and household use. The application further relates to recombinant microorganisms co-expressing a C2 branch pathway and a C3 branch pathway for the production of MEG and one or more three-carbon compounds. Also provided are methods of producing MEG and one or more three-carbon compounds using the recombinant microorganisms, as well as compositions comprising the recombinant microorganisms and/or optionally the products MEG and one or more three-carbon compounds.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: September 15, 2020
    Assignee: BRASKEM S.A.
    Inventors: Daniel Johannes Koch, Mateus Schreiner Lopes, Ane Fernanda Beraldi Zeidler, Lucas Pedersen Parizzi
  • Patent number: 10774347
    Abstract: The present application relates to recombinant microorganisms useful in the biosynthesis of monoethylene glycol (MEG) and one or more three-carbon compounds such as acetone, isopropanol or propene. The MEG and one or more three-carbon compounds described herein are useful as starting material for production of other compounds or as end products for industrial and household use. The application further relates to recombinant microorganisms co-expressing a C2 branch pathway and a C3 branch pathway for the production of MEG and one or more three-carbon compounds. Also provided are methods of producing MEG and one or more three-carbon compounds using the recombinant microorganisms, as well as compositions comprising the recombinant microorganisms and/or optionally the products MEG and one or more three-carbon compounds.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: September 15, 2020
    Assignee: BRASKEM S.A.
    Inventors: Daniel Johannes Koch, Mateus Schreiner Lopes, Ane Fernanda Beraldi Zeidler, Lucas Pedersen Parizzi
  • Publication number: 20200208160
    Abstract: The present disclosure provides methods of modulating the flux of carbon through the monoethylene glycol (MEG) biosynthesis pathway and one or more C3 compound biosynthesis pathways by expressing enzymes that are essential for improving C3 compounds and modulating other genetic aspects of MEG and C3 compound biosynthesis. The disclosure is further drawn to modified microbes comprising the disrupted sequences and overexpressed sequences, and compositions thereof.
    Type: Application
    Filed: December 27, 2019
    Publication date: July 2, 2020
    Inventors: Ane Fernanda Beraldi ZEIDLER, Beatriz Leite MAGALHAES, Lucas Pedersen PARIZZI, Veronica Maria Rodege Gogola KOLLING
  • Publication number: 20190276858
    Abstract: The present disclosure relates to single and/or multi-stage, biological processes and systems for converting C5, C6, and/or disaccharide carbon sources to desirable products including monoethylene glycol (MEG) and one or more three-carbon compounds such as acetone, isopropanol or propene. The MEG and one or more three-carbon compounds described herein are useful as starting material for production of other compounds or as end products for industrial and household use. The disclosure further relates to the processes carrying out fermentations of substrates in a single phase bioreactor or in a multiphase bioreactor comprising growth and production phases. Additionally, the processes and systems described herein result in high productivity and yield of the desired products due to intermittent or continuous removal of products to avoid inhibitory effects.
    Type: Application
    Filed: March 12, 2019
    Publication date: September 12, 2019
    Inventors: JOSE GERALDO DA CRUZ PRADELLA, ANE FERNANDA BERALDI ZEIDLER, ANA KARINA BRAMBILLA COSTA
  • Publication number: 20180179558
    Abstract: The present application relates to recombinant microorganisms useful in the biosynthesis of monoethylene glycol (MEG) and one or more three-carbon compounds such as acetone, isopropanol or propene. The MEG and one or more three-carbon compounds described herein are useful as starting material for production of other compounds or as end products for industrial and household use. The application further relates to recombinant microorganisms co-expressing a C2 branch pathway and a C3 branch pathway for the production of MEG and one or more three-carbon compounds. Also provided are methods of producing MEG and one or more three-carbon compounds using the recombinant microorganisms, as well as compositions comprising the recombinant microorganisms and/or optionally the products MEG and one or more three-carbon compounds.
    Type: Application
    Filed: October 6, 2017
    Publication date: June 28, 2018
    Inventors: Daniel Johannes Koch, Mateus Schreiner LOPES, Ane Fernanda Beraldi Zeidler, Lucas Pedersen Parizzi
  • Publication number: 20180023101
    Abstract: The present application relates to recombinant microorganisms useful in the biosynthesis of monoethylene glycol (MEG) and one or more three-carbon compounds such as acetone, isopropanol or propene. The MEG and one or more three-carbon compounds described herein are useful as starting material for production of other compounds or as end products for industrial and household use. The application further relates to recombinant microorganisms co-expressing a C2 branch pathway and a C3 branch pathway for the production of MEG and one or more three-carbon compounds. Also provided are methods of producing MEG and one or more three-carbon compounds using the recombinant microorganisms, as well as compositions comprising the recombinant microorganisms and/or optionally the products MEG and one or more three-carbon compounds.
    Type: Application
    Filed: October 6, 2017
    Publication date: January 25, 2018
    Inventors: Daniel Johannes KOCH, Mateus Schreiner Lopes, Ane Fernanda Beraldi Zeidler, Lucas Pedersen Parizzi
  • Publication number: 20170260551
    Abstract: The present application relates to recombinant microorganisms useful in the biosynthesis of monoethylene glycol (MEG) and one or more three-carbon compounds such as acetone, isopropanol or propene. The MEG and one or more three-carbon compounds described herein are useful as starting material for production of other compounds or as end products for industrial and household use. The application further relates to recombinant microorganisms co-expressing a C2 branch pathway and a C3 branch pathway for the production of MEG and one or more three-carbon compounds. Also provided are methods of producing MEG and one or more three-carbon compounds using the recombinant microorganisms, as well as compositions comprising the recombinant microorganisms and/or optionally the products MEG and one or more three-carbon compounds.
    Type: Application
    Filed: March 8, 2017
    Publication date: September 14, 2017
    Inventors: Daniel Johannes KOCH, Mateus Schreiner LOPES, Ane Fernanda Beraldi ZEIDLER, Lucas Pedersen PARIZZI
  • Publication number: 20150064759
    Abstract: The present disclosure provides a non-naturally occurring microorganism comprising: one or more polynucleotides encoding one or more enzymes in a pathway that produces acetyl-CoA; one or more polynucleotides encoding one or more enzymes in a pathway that catalyze a conversion of cytosolic acetyl-CoA to 2-propanol; one or more polynucleotides encoding one or more enzymes in a pathway that catalyze a conversion of dihydroxyacetone-phosphate to 1-propanol and/or 1,2-propanediol, wherein the microorganism has reduced levels of pyruvate decarboxylase enzymatic activity (e.g., the microorganism comprises a disruption of one or more enzymes that decarboxylate pyruvate and/or a disruption of one or more transcription factors of one or more enzymes that decarboxylate pyruvate), and wherein the microorganism is capable of growing on a C6 sugar as a sole carbon source under anaerobic conditions.
    Type: Application
    Filed: September 5, 2014
    Publication date: March 5, 2015
    Inventors: Johana Rincones Perez, Juan Diego Rojas Rojas, Ane Fernanda Beraldi Zeidler, Aline Silva Romao Dumaresq, Marilene Elizabete Pavan Rodrigues, Iuri Estrada Gouvea, Felipe Galzerani, Daniel Johannes Koch, Lucas Pedersen Parizzi, Mateus Schreiner Garcez Lopes, Thomas Martin Halder, Antonio Luis Ribeiro De Castro Morschbacker, Avram Michael Slovic
  • Publication number: 20150064760
    Abstract: The present disclosure provides a non-naturally occurring microorganism comprising: one or more polynucleotides encoding one or more enzymes in a pathway that produces acetyl-CoA; one or more polynucleotides encoding one or more enzymes in a pathway that catalyze a conversion of crotonyl alcohol, 5-hydroxy-3-ketovaleryl-CoA, 3-ketopent-4-enoyl-CoA, or 3,5-ketovaleryl-CoA to butadiene; one or more polynucleotides encoding one or more enzymes in a pathway that catalyze a conversion of dihydroxyacetone-phosphate to 1-propanol and/or 1,2-propanediol, wherein the microorganism has reduced levels of pyruvate decarboxylase enzymatic activity (e.g., the microorganism comprises a disruption of one or more enzymes that decarboxylate pyruvate and/or a disruption of one or more transcription factors of one or more enzymes that decarboxylate pyruvate), and wherein the microorganism is capable of growing on a C6 sugar as a sole carbon source under anaerobic conditions.
    Type: Application
    Filed: September 5, 2014
    Publication date: March 5, 2015
    Inventors: Johana Rincones Perez, Juan Diego Rojas Rojas, Ane Fernanda Beraldi Zeidler, Aline Silva Romao Dumaresq, Marilene Elizabete Pavan Rodrigues, Iuri Estrada Gouvea, Felipe Galzerani, Daniel Johannes Koch, Lucas Pedersen Parizzi, Mateus Schreiner Garcez Lopes, Thomas Martin Halder, Antonio Luis Ribeiro De Castro Morschbacker, Avram Michael Slovic
  • Publication number: 20130095542
    Abstract: The invention provides fermentative methods for producing n-propanol. The methods of the invention involve providing a suitable carbon source, a microorganism expressing the dicarboxylic acid pathway, reducing equivalents, and at least one gene coding for an enzyme that catalyzes the conversion of propionate/propionyl-CoA into n-propanol. The methods further involve contacting the carbon source and reducing equivalents with the microorganism under conditions favorable for the production of n-propanol. Also provided are methods for producing propylene and polypropylene from the n-propanol and microorganisms suitable for use in the methods of the invention.
    Type: Application
    Filed: September 9, 2010
    Publication date: April 18, 2013
    Inventors: Gonçalo Amarante Guimarães Pereira, Johana Rincones Perez, Marcelo Falsarella Carazzolle, Ane Fernanda Beraldi Zeidler, Lucas Pedersen Parizzi, Luige Armando Llerena Calderón, Maria Carolina de Barros Grassi, Inês Lunardi, Luciana Gonzaga de Oliveira, José Augusto Rosário Rodrigues, Paulo José Samenho Moran, Antonio Luiz Ribeiro de Castro Morschbacker, Luiza Roza, Márcio Henrìque dos Santos Andrade