Patents by Inventor An-Feng HUANG

An-Feng HUANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250162871
    Abstract: A preparation method of an iron phosphate precursor for batteries is disclosed and includes steps of: (a) providing an iron powder, wherein the iron powder has an apparent density of iron powder ranging from 2.3 g/cm3 to 2.6 g/cm3, and a particle size composed of a first particle-size range and a second particle-size range, the first particle-size range is greater than the second particle-size range, and a weight of the iron powder in the second particle-size range accounts between 10% and 30% of the total weight of the iron powder; (b) providing a phosphoric acid to react with the iron powder to generate a first product; and (c) heat-treating the first product in an air or oxygen atmosphere to form the iron phosphate precursor.
    Type: Application
    Filed: December 22, 2023
    Publication date: May 22, 2025
    Inventors: Kuan-Yin Fu, Jing-Xuan Wang, An-Feng Huang
  • Publication number: 20250162872
    Abstract: A preparation method of an iron phosphate precursor for batteries is disclosed and includes steps of: (a) providing a phosphoric acid and an iron powder, wherein the iron powder has an apparent density of iron powder ranging from 2.3 g/cm3 to 2.6 g/cm3, and a particle size composed of a first particle-size range and a second particle-size range, the first particle-size range is greater than the second particle-size range, and a weight of the iron powder in the second particle-size range accounts between 10% and 30% of the total weight of the iron powder; (b) reacting the phosphoric acid with the iron powder to generate a first product; and (c) heat-treating the first product in an air or oxygen atmosphere to form the iron phosphate precursor.
    Type: Application
    Filed: December 22, 2023
    Publication date: May 22, 2025
    Inventors: Jing-Xuan Wang, Kuan-Yin Fu, An-Feng Huang
  • Publication number: 20240076187
    Abstract: The present invention provides a preparation method of a battery composite material, wherein a precursor with the chemical formula FePO4 is formed by introducing air or oxygen during calcination. The precursor is then reacted with a first reactant containing lithium atoms and a carbon source to form a battery composite material with the chemical formula LiFePO4.
    Type: Application
    Filed: August 29, 2023
    Publication date: March 7, 2024
    Inventors: KUAN-YIN FU, Jing-Xuan Wang, An-Feng Huang
  • Publication number: 20240063370
    Abstract: A dual-cation metal battery and a charging and discharging method thereof are disclosed to reduce the cost of materials, maintain the long-term service life and provide multiple varied applications. The dual-cation metal battery includes a positive electrode, a negative electrode, an electrolyte solution and a separator. The positive electrode includes a positive-electrode material selected from the group consisting of heterosite (FePO4), lithium iron phosphate (LiFePO4) and LixNa1-xFePO4, and 0<x<1. The negative electrode includes a metal mixture consisting of lithium metal and sodium metal, and the weight ratio of lithium metal to sodium metal is 1:3. The electrolyte solution is disposed between the positive electrode and the negative electrode. The separator is disposed in the electrolyte solution, and the positive electrode and the negative electrode are separated from each other by the separator.
    Type: Application
    Filed: May 2, 2023
    Publication date: February 22, 2024
    Inventors: Han-Wei Hsieh, Yi-Ting Li, An-Feng Huang
  • Patent number: 10266410
    Abstract: A preparation method of battery composite material includes steps of providing a manganese-contained compound, phosphoric acid, a lithium-contained compound, a carbon source, and deionized water; processing a reaction of the manganese-contained compound, the phosphoric acid, and a portion of the deionized water to produce a first product; placing the first product at a first temperature for at least a first time period to produce a first precursor, wherein the chemical formula of the first precursor is written by Mn5(HPO4)2(PO4)2(H2O)4; and processing a reaction of at least the first precursor, the lithium-contained compound, and another portion of the deionized water, adding the carbon source, and then calcining to produce battery composite material. Therefore, the preparation time is shortened, the energy consuming is reduced, the phase forming of the precursor is more stable, and the advantages of reducing the cost of preparation and enhancing the quality of products are achieved.
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: April 23, 2019
    Assignee: ADVANCED LITHIUM ELECTROCHEMISTRY CO., LTD.
    Inventors: Hsiang-Pin Lin, Han-Wei Hsieh, An-Feng Huang, Chun-Ming Huang
  • Patent number: 10236512
    Abstract: A preparation method of a battery composite material at least includes the following steps. Firstly, an iron compound, phosphoric acid, a manganese compound, a lithium compound and a carbon source are provided. Then, the phosphoric acid is added to a mixture of the iron compound and deionized water while stirring to form a first phosphate solution, a first amount of the manganese compound is added to the first phosphate solution, and the manganese compound and the first phosphate solution are continuously reacted for a first time period, so that a first product solution is formed. Then, a reaction between the first product solution, the carbon source and the lithium compound is carried out to form a precursor. Then, the precursor is thermally treated to form the battery composite material, wherein the battery composite material has a chemical formula: LiFexMn1-xPO4.
    Type: Grant
    Filed: May 8, 2014
    Date of Patent: March 19, 2019
    Assignee: ADVANCED LITHIUM ELECTROCHEMISTRY CO., LTD.
    Inventors: Chen-Tsung Hung, Chi-Yen Lin, An-Feng Huang
  • Publication number: 20170369317
    Abstract: A preparation method of battery composite material includes steps of providing a manganese-contained compound, phosphoric acid, a lithium-contained compound, a carbon source, and deionized water; processing a reaction of the manganese-contained compound, the phosphoric acid, and a portion of the deionized water to produce a first product; placing the first product at a first temperature for at least a first time period to produce a first precursor, wherein the chemical formula of the first precursor is written by Mn5(HPO4)2(PO4)2(H2O)4; and processing a reaction of at least the first precursor, the lithium-contained compound, and another portion of the deionized water, adding the carbon source, and then calcining to produce battery composite material. Therefore, the preparation time is shortened, the energy consuming is reduced, the phase forming of the precursor is more stable, and the advantages of reducing the cost of preparation and enhancing the quality of products are achieved.
    Type: Application
    Filed: January 7, 2016
    Publication date: December 28, 2017
    Applicant: Advanced Lithium Electrochemistry Co., Ltd.
    Inventors: Hsiang-Pin LIN, Han-Wei HSIEH, An-Feng HUANG, Chun-Ming HUANG
  • Publication number: 20160072129
    Abstract: A preparation method of a battery composite material at least includes the following steps. Firstly, an iron compound, phosphoric acid, a manganese compound, a lithium compound and a carbon source are provided. Then, the phosphoric acid is added to a mixture of the iron compound and deionized water while stirring to form a first phosphate solution, a first amount of the manganese compound is added to the first phosphate solution, and the manganese compound and the first phosphate solution are continuously reacted for a first time period, so that a first product solution is formed. Then, a reaction between the first product solution, the carbon source and the lithium compound is carried out to form a precursor. Then, the precursor is thermally treated to form the battery composite material, wherein the battery composite material has a chemical formula: LiFexMn1-xPO4.
    Type: Application
    Filed: May 8, 2014
    Publication date: March 10, 2016
    Inventors: Chen-Tsung HUNG, Chi-Yen LIN, An-Feng HUANG