Patents by Inventor Angela N. Troxell

Angela N. Troxell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9308503
    Abstract: A method for separation of liquid mixtures with a polybenzoxazole (PBO) membrane from a self-cross-linked aromatic polyimide polymer membrane is provided.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: April 12, 2016
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Zara Osman, Angela N. Troxell
  • Patent number: 9211508
    Abstract: A method of making a polybenzoxazole (PBO) membrane from a self-cross-linked aromatic polyimide polymer membrane is provided. These membranes are useful in the separation of gas mixtures and liquid mixtures. The PBO membrane is made by fabricating a self-cross-linkable aromatic polyimide polymer membrane comprising both hydroxyl functional groups and carboxylic acid functional groups; cross-linking the polymer to form a self-cross-linked aromatic polyimide polymer membrane by heating the membrane at 250° to 300° C. under an inert atmosphere; and thermal heating the self-cross-linked aromatic polyimide polymer membrane at a temperature from about 350° to 500° C. under an inert atmosphere to convert the self-cross-linked aromatic polyimide polymer membrane into a PBO membrane. A membrane coating step may be added by coating the selective layer surface of the PBO membrane with a thin layer of high permeability material.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: December 15, 2015
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Zara Osman, Angela N. Troxell
  • Publication number: 20150328596
    Abstract: A method of making a polybenzoxazole (PBO) membrane from a self-cross-linked aromatic polyimide polymer membrane is provided. These membranes are useful in the separation of gas mixtures and liquid mixtures. The PBO membrane is made by fabricating a self-cross-linkable aromatic polyimide polymer membrane comprising both hydroxyl functional groups and carboxylic acid functional groups; cross-linking the polymer to form a self-cross-linked aromatic polyimide polymer membrane by heating the membrane at 250° to 300° C. under an inert atmosphere; and thermal heating the self-cross-linked aromatic polyimide polymer membrane at a temperature from about 350° to 500° C. under an inert atmosphere to convert the self-cross-linked aromatic polyimide polymer membrane into a PBO membrane. A membrane coating step may be added by coating the selective layer surface of the PBO membrane with a thin layer of high permeability material.
    Type: Application
    Filed: July 29, 2015
    Publication date: November 19, 2015
    Inventors: Chunqing Liu, Zara Osman, Angela N. Troxell
  • Patent number: 9126152
    Abstract: A polybenzoxazole (PBO) membrane from a self-cross-linked aromatic polyimide polymer membrane is provided. These membranes are useful in the separation of gas mixtures. The PBO membrane is made by fabricating a self-cross-linkable aromatic polyimide polymer membrane comprising both hydroxyl functional groups and carboxylic acid functional groups; cross-linking the polymer to form a self-cross-linked aromatic polyimide polymer membrane by heating the membrane at 250° to 300° C. under an inert atmosphere; and thermal heating the self-cross-linked aromatic polyimide polymer membrane at a temperature from about 350° to 500° C. under an inert atmosphere to convert the self-cross-linked aromatic polyimide polymer membrane into a PBO membrane. A membrane coating step may be added by coating the selective layer surface of the PBO membrane with a thin layer of high permeability material.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: September 8, 2015
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Zara Osman, Angela N. Troxell
  • Patent number: 9126156
    Abstract: This invention relates to self-cross-linkable and self-cross-linked aromatic polyimide polymers, their membranes and methods for making and using these polymers and membranes. The self-cross-linkable aromatic polyimide polymer described in the present invention comprises both hydroxyl functional groups and carboxylic acid functional groups. The self-cross-linked aromatic polyimide was formed via heating the self-cross-linkable aromatic polyimide polymer at ?300° C. The self-cross-linked aromatic polyimide membranes exhibit high selectivity in separation of mixtures of gases and liquids.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: September 8, 2015
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Zara Osman, Angela N. Troxell
  • Patent number: 9126155
    Abstract: This invention relates to self-cross-linkable and self-cross-linked aromatic polyimide polymers, their membranes and methods for making and using these polymers and membranes. The self-cross-linkable aromatic polyimide polymer described in the present invention comprises both hydroxyl functional groups and carboxylic acid functional groups. The self-cross-linked aromatic polyimide was formed via heating the self-cross-linkable aromatic polyimide polymer at ?300° C. The self-cross-linked aromatic polyimide membranes exhibit high selectivity in separation of mixtures of gases and liquids.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: September 8, 2015
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Zara Osman, Angela N. Troxell
  • Publication number: 20150093510
    Abstract: This invention relates to self-cross-linkable and self-cross-linked aromatic polyimide polymers, their membranes and methods for making and using these polymers and membranes. The self-cross-linkable aromatic polyimide polymer described in the present invention comprises both hydroxyl functional groups and carboxylic acid functional groups. The self-cross-linked aromatic polyimide was formed via heating the self-cross-linkable aromatic polyimide polymer at ?300° C. The self-cross-linked aromatic polyimide membranes exhibit high selectivity in separation of mixtures of gases and liquids.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 2, 2015
    Inventors: Chunqing Liu, Zara Osman, Angela N. Troxell
  • Publication number: 20150090118
    Abstract: This invention relates to self-cross-linkable and self-cross-linked aromatic polyimide polymers, their membranes and methods for making and using these polymers and membranes. The self-cross-linkable aromatic polyimide polymer described in the present invention comprises both hydroxyl functional groups and carboxylic acid functional groups. The self-cross-linked aromatic polyimide was formed via heating the self-cross-linkable aromatic polyimide polymer at ?300° C. The self-cross-linked aromatic polyimide membranes exhibit high selectivity in separation of mixtures of gases and liquids.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 2, 2015
    Applicant: UOP LLC
    Inventors: Chunqing Liu, Zara Osman, Angela N. Troxell
  • Publication number: 20150094500
    Abstract: A method of making a polybenzoxazole (PBO) membrane from a self-cross-linked aromatic polyimide polymer membrane is provided. These membranes are useful in the separation of gas mixtures and liquid mixtures. The PBO membrane is made by fabricating a self-cross-linkable aromatic polyimide polymer membrane comprising both hydroxyl functional groups and carboxylic acid functional groups; cross-linking the polymer to form a self-cross-linked aromatic polyimide polymer membrane by heating the membrane at 250° to 300° C. under an inert atmosphere; and thermal heating the self-cross-linked aromatic polyimide polymer membrane at a temperature from about 350° to 500° C. under an inert atmosphere to convert the self-cross-linked aromatic polyimide polymer membrane into a PBO membrane. A membrane coating step may be added by coating the selective layer surface of the PBO membrane with a thin layer of high permeability material.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 2, 2015
    Applicant: UOP LLC
    Inventors: Chunqing Liu, Zara Osman, Angela N. Troxell
  • Publication number: 20150094429
    Abstract: A method of making a polybenzoxazole (PBO) membrane from a self-cross-linked aromatic polyimide polymer membrane is provided. These membranes are useful in the separation of gas mixtures and liquid mixtures. The PBO membrane is made by fabricating a self-cross-linkable aromatic polyimide polymer membrane comprising both hydroxyl functional groups and carboxylic acid functional groups; cross-linking the polymer to form a self-cross-linked aromatic polyimide polymer membrane by heating the membrane at 250° to 300° C. under an inert atmosphere; and thermal heating the self-cross-linked aromatic polyimide polymer membrane at a temperature from about 350° to 500° C. under an inert atmosphere to convert the self-cross-linked aromatic polyimide polymer membrane into a PBO membrane. A membrane coating step may be added by coating the selective layer surface of the PBO membrane with a thin layer of high permeability material.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 2, 2015
    Applicant: UOP LLC
    Inventors: Chunqing Liu, Zara Osman, Angela N. Troxell
  • Publication number: 20150005468
    Abstract: The present invention generally relates to high permeability, UV cross-linkable copolyimide polymers and membranes for gas, vapor, and liquid separations, as well as methods for making and using these membranes. The invention provides a process for separating at least one gas from a mixture of gases using the high permeability copolyimide membrane or the UV cross-linked copolyimide membrane, the process comprising: (a) providing a high permeability copolyimide membrane or a UV cross-linked copolyimide membrane which is permeable to said at least one gas; (b) contacting the mixture on one side of the high permeability copolyimide membrane or the UV cross-linked copolyimide membrane to cause said at least one gas to permeate the membrane; and (c) removing from the opposite side of the membrane a permeate gas composition comprising a portion of said at least one gas which permeated said membrane.
    Type: Application
    Filed: May 14, 2014
    Publication date: January 1, 2015
    Applicant: UOP LLC
    Inventors: Zara Osman, Chunqing Liu, Angela N. Troxell, Carl W. Liskey
  • Publication number: 20140290478
    Abstract: The present invention discloses high performance cross-linked polyimide asymmetric flat sheet membranes and a process of using such membranes. The cross-linked polyimide asymmetric flat sheet membranes have shown CO2 permeance higher than 80 GPU and CO2/CH4 selectivity higher than 20 at 50° C. under 6996 kPa of a feed gas with 10% CO2 and 90% CH4 for CO2/CH4 separation.
    Type: Application
    Filed: March 27, 2013
    Publication date: October 2, 2014
    Applicant: UOP LLC
    Inventors: Chunqing Liu, Zara Osman, Howie Q. Tran, Angela N. Troxell