Patents by Inventor Angelo Yializis

Angelo Yializis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20020128088
    Abstract: A method and apparatus for increased hitting efficacy in a sporting implement. Energy absorption characteristics are adjusted so as to vary over the hitting surface of the sporting implement. This may be employed to equalize the hitting performance of the sporting implement with respect to different locations of impact thereon.
    Type: Application
    Filed: March 18, 2002
    Publication date: September 12, 2002
    Inventors: Angelo Yializis, George Frantziskonis
  • Patent number: 6447553
    Abstract: A radiation curable monomer and a dystuff are mixed in a curable formulation and fed into a hot evaporator under vacuum. The blend is flash evaporated through a nozzle and recondensed onto a moving substrate in contact with a temperature-controlled rotating drum. The condensed film is then crosslinked with a high-energy ultraviolet or electron-beam radiation source to effect cross-linking of the monomer. The resulting product consists of a crosslinked polymer matrix incorporating dyestuff molecules within its structure, which dramatically enhances the durability, solvent resistance, heat stability and migration fastness of the product. These properties can be further improved by chemically bonding the dyestuff molecules with the crosslinked polymer network, which can be accomplished by judiciously functionalizing the dyestuff with appropriate functional groups designed to polymerize or to react with the curable monomer.
    Type: Grant
    Filed: October 24, 2000
    Date of Patent: September 10, 2002
    Assignee: Sigma Technologies International, Inc.
    Inventors: Michael G. Mikhael, Angelo Yializis
  • Patent number: 6441553
    Abstract: A porous metallic layer is incorporated in one of the electrodes of a plasma treatment system. A plasma gas is injected into the electrode at substantially atmospheric pressure and allowed to diffuse through the porous layer, thereby forming a uniform glow-discharge plasma. The film material to be treated is exposed to the plasma created between this electrode and a second electrode covered by a dielectric layer. Because of the micron size of the pores of the porous metal, each pore also produces a hollow cathode effect that facilitates the ionization of the plasma gas. As a result, a steady-state glow-discharge plasma is produced at atmospheric pressure and at power frequencies as low as 60 Hz. According to another aspect of the invention, vapor deposition is carried out in combination with plasma treatment by vaporizing a substance of interest, mixing it with the plasma gas, and diffusing the mixture through the porous electrode.
    Type: Grant
    Filed: September 12, 2000
    Date of Patent: August 27, 2002
    Assignee: Sigma Technologies International, Inc.
    Inventors: Angelo Yializis, Wolfgang Decker, Michael G. Mikhael, Shahid A. Pirzada
  • Publication number: 20010041265
    Abstract: A hybrid film, comprising a first polymer film having a plasma-treated surface and a second polymer film having first and second surfaces, with the first surface of the second polymer film being disposed along the first plasma-treated surface of the first polymer film, has superior thermal and mechanical properties that improve performance in a number of applications, including food packaging, thin film metallized and foil capacitors, metal evaporated magnetic tapes, flexible electrical cables, and decorative and optically variable films. One or more metal layers may be deposited on either the plasma-treated surface of the substrate and/or the radiation-cured acrylate polymer. A ceramic layer may be deposited on the radiation-cured acrylate polymer to provide an oxygen and moisture barrier film.
    Type: Application
    Filed: February 21, 2001
    Publication date: November 15, 2001
    Inventor: Angelo Yializis
  • Patent number: 6287687
    Abstract: Methods and apparatus for plasma modifying a substrate are disclosed along with associated techniques for applying coatings to the substrate. Particular utility has been found using a hollow cathode to generate the plasma along with magnetic focusing means to focus the plasma at the surface of a substrate.
    Type: Grant
    Filed: May 7, 1999
    Date of Patent: September 11, 2001
    Assignee: Asten, Inc.
    Inventors: Angelo Yializis, Richard E. Ellwanger, Michael G. Mikhael, Wolfgang Decker, C. Barry Johnson, Gale Shipley, Timothy D. O'Brien
  • Patent number: 6270841
    Abstract: A monomer is selected to produce a polymeric film having desirable characteristics for a particular application. The monomer is polymerized under controlled conditions to produce a solid oligomer having those characteristics at a molecular weight suitable for evaporation under vacuum at a temperature lower than its thermal decomposition temperature. The process of polymerization to produce the oligomer is carried out under conditions that yield a finite molecular-chain length with no residual reactive groups. The solid oligomer so produced is liquefied and extruded as a film onto a revolving drum in the evaporation section of a conventional vapor deposition chamber, and it is then cryocondensed on a cold substrate to form a solid thin film having the same desirable characteristic selected in the solid oligomer constituting the starting material.
    Type: Grant
    Filed: July 2, 1999
    Date of Patent: August 7, 2001
    Assignee: Sigma Technologies International, Inc.
    Inventors: Michael G. Mikhael, Angelo Yializis
  • Patent number: 6214422
    Abstract: A hybrid film, comprising a first polymer film having a plasma-treated surface and a second polymer film having first and second surfaces, with the first surface of the second polymer film being disposed along the first plasma-treated surface of the first polymer film, has superior thermal and mechanical properties that improve performance in a number of applications, including food packaging, thin film metallized and foil capacitors, metal evaporated magnetic tapes, flexible electrical cables, and decorative and optically variable films. One or more metal layers may be deposited on either the plasma-treated surface of the substrate and/or the radiation-cured acrylate polymer A ceramic layer may be deposited on the radiation-cured acrylate polymer to provide an oxygen and moisture barrier film. The hybrid film is produced using a high speed, vacuum polymer deposition process that is capable of forming thin, uniform, high temperature, cross-liked acrylate polymers on specific thermoplastic or thermoset films.
    Type: Grant
    Filed: October 8, 1998
    Date of Patent: April 10, 2001
    Assignee: Sigma Laboratories of Arizona, Inc.
    Inventor: Angelo Yializis
  • Patent number: 6146462
    Abstract: Methods and apparatus for plasma modifying a substrate are disclosed along with associated techniques for applying coatings to the substrate. Particular utility has been found using a hollow cathode to generate the plasma along with magnetic focusing means to focus the plasma at the surface of a substrate.
    Type: Grant
    Filed: May 7, 1999
    Date of Patent: November 14, 2000
    Assignee: AstenJohnson, Inc.
    Inventors: Angelo Yializis, Richard E. Ellwanger, Michael G. Mikhael, Wolfgang Decker, C. Barry Johnson, Gale Shipley, Timothy D. O'Brien
  • Patent number: 6118218
    Abstract: A plasma treater incorporates a porous metallic layer in one of the electrodes. The porous layer is selected with pores of average size within one order of magnitude of the mean free path of the plasma gas at atmospheric pressure. The plasma gas is injected into the electrode at substantially atmospheric pressure and allowed to diffuse through the porous layer, thereby forming a uniform glow-discharge plasma. The film material to be treated is exposed to the plasma created between this electrode and a second electrode covered by a dielectric layer. Because of the micron size of the pores of the porous metal, each pore also produces a hollow cathode effect that facilitates the ionization of the plasma gas. As a result, a steady-state glow-discharge plasma is produced at atmospheric pressure and at power frequencies as low as 60 Hz.
    Type: Grant
    Filed: February 1, 1999
    Date of Patent: September 12, 2000
    Assignee: Sigma Technologies International, Inc.
    Inventors: Angelo Yializis, Shahid A. Pirzada, Wolfgang Decker
  • Patent number: 6106627
    Abstract: A method of improving the breakdown strength of polymer multi-layer (PML) capacitors is provided and of providing a window in food packaging is provided. The method comprises patterning the aluminum coating, either by selective removal of deposited aluminum or by preventing deposition of the aluminum on selected areas of the underlying polymer film. Apparatus is also provided for patterning metal deposition on polymer films comprising masking for defining regions in which metal is deposited. The apparatus comprises: (a) a rotating drum; (b) a monomer evaporator for depositing a monomer film on the rotating drum; (c) a radiation curing element for curing the monomer film to form a cross-linked polymer film; and (d) a resistive evaporator for depositing a metal film on the cross-linked polymer film. The foregoing elements are enclosed in a vacuum chamber.
    Type: Grant
    Filed: April 4, 1996
    Date of Patent: August 22, 2000
    Assignee: Sigma Laboratories of Arizona, Inc.
    Inventor: Angelo Yializis
  • Patent number: 6092269
    Abstract: A high energy density, high power density capacitor having an energy density of at least about 0.5 J/cm.sup.3 is provided. The capacitor comprises a plurality of interleaved metal electrode layers separated by a polymer layer. The interleaved metal electrode layers terminate at opposite ends in a solder termination strip. The high energy density aspect of the capacitors of the invention is achieved by at least one of the following features: (a) the dielectric thickness between the interleaved metal electrode layers is a maximum of about 5 .mu.m; (b) the polymer is designed with a high dielectric constant .kappa. of at least about 3.5; (c) the metal electrode layers within the polymer layer are recessed along edges orthogonal to the solder termination strips to prevent arcing between the metal electrode layers at the edges; and (d) the resistivity of the metal electrode layers is within the range of about 10 to 500 ohms per square, or a corresponding thickness of about 200 to 30 .ANG..
    Type: Grant
    Filed: March 20, 1998
    Date of Patent: July 25, 2000
    Assignee: Sigma Laboratories of Arizona, Inc.
    Inventors: Angelo Yializis, Theodore A. Miller
  • Patent number: 6083628
    Abstract: A hybrid film, comprising a first polymer film having a plasma-treated surface and a second polymer film having first and second surfaces, with the first surface of the second polymer film being disposed along the first plasma-treated surface of the first polymer film, has superior thermal and mechanical properties that improve performance in a number of applications, including food packaging, thin film metallized and foil capacitors, metal evaporated magnetic tapes, flexible electrical cables, and decorative and optically variable films. One or more metal layers may be deposited on either the plasma-treated surface of the substrate and/or the radiation-cured acrylate polymer. A ceramic layer may be deposited on the radiation-cured acrylate polymer to provide an oxygen and moisture barrier film.
    Type: Grant
    Filed: April 4, 1996
    Date of Patent: July 4, 2000
    Assignee: Sigma Laboratories of Arizona, Inc.
    Inventor: Angelo Yializis
  • Patent number: 6066826
    Abstract: Apparatus and process for plasma treatment of moving webs, or films, are disclosed. The apparatus includes magnets and multiple hollow cathodes, which, in the presence of a plasma, magnetically focuses and thereby intensifies the plasma to one side of the film surface. The moving web is positioned either between the hollow cathodes and the magnets or in front of the hollow cathodes and the magnets. The plasma treatment functionalizes the film surface.
    Type: Grant
    Filed: March 16, 1998
    Date of Patent: May 23, 2000
    Inventor: Angelo Yializis
  • Patent number: 6040017
    Abstract: The fabrication of linear and non-linear optical materials including photoconductive, photorefractive, and optical limiting polymer composite films from radiation curable homogeneous solutions or heterogeneous slurries via vacuum flash evaporation techniques is disclosed.
    Type: Grant
    Filed: October 2, 1998
    Date of Patent: March 21, 2000
    Assignee: Sigma Laboratories, Inc.
    Inventors: Michael G. Mikhael, Ali Boufelfel, Angelo Yializis
  • Patent number: 5912069
    Abstract: Metal-polymer nanolaminate products are fabricated from a bulk nanolaminate material composed of thousands of alternating metal and polymer layers. The nanolaminate material is produced by a prior art ultra high speed vacuum nanotechnology process that forms metal layers separated by radiation cross linked multifunctional acrylate polymer materials. The polymer to metal ratio in the nanolaminate composite can be successfully controlled. The polymer chemistry in the nanolaminate can be varied to incorporate a broad range of functional groups. The nanolaminate products are safe to handle and are environmentally and chemically stable at least up to 250.degree. C. A change in polymer chemistry can be used to lower or enhance the thermal degradation point of the polymer material.
    Type: Grant
    Filed: December 19, 1996
    Date of Patent: June 15, 1999
    Assignee: Sigma Laboratories of Arizona
    Inventors: Angelo Yializis, Richard E. Ellwanger
  • Patent number: 5731948
    Abstract: A high energy density, high power density capacitor having an energy density of at least about 0.5 J/cm.sup.3 is provided. The capacitor comprises a plurality of interleaved metal electrode layers separated by a polymer layer. The interleaved metal electrode layers terminate at opposite ends in a solder termination strip. The high energy density aspect of the capacitors of the invention is achieved by at least one of the following features: (a) the dielectric thickness between the interleaved metal electrode layers is a maximum of about 5 .mu.m; (b) the polymer is designed with a high dielectric constant .kappa. of at least about 3.5; (c) the metal electrode layers within the polymer layer are recessed along edges orthogonal to the solder termination strips to prevent arcing between the metal electrode layers at the edges; and (d) the resistivity of the metal electrode layers is within the range of about 10 to 500 ohms per square, or a corresponding thickness of about 200 to 30 .ANG..
    Type: Grant
    Filed: April 4, 1996
    Date of Patent: March 24, 1998
    Assignee: Sigma Labs Inc.
    Inventors: Angelo Yializis, Theodore A. Miller
  • Patent number: 5716532
    Abstract: A method of improving the breakdown strength of polymer multi-layer (PML) capacitors is provided. The method comprises removing metal, specifically, aluminum, from the cut edge. This is done by either etching back the metal electrode layers in either basic or acidic solution or by anodizing the metal to cover that portion of the metal at the edge with an oxide. Removing the metal from the cut edge increases the breakdown strength of the PML capacitors by a factor of two or more.
    Type: Grant
    Filed: June 11, 1996
    Date of Patent: February 10, 1998
    Assignee: Sigma Labs, Inc.
    Inventors: Angelo Yializis, John G. Keimel, Alvin S. Rhorer, Trey W. Huntoon
  • Patent number: 5125138
    Abstract: A monolithic multi-layer capacitor having a central capacitively active area and two electrode joining section separated from the active area by sloped sections has dielectric layers about 1 micron thick in the active area which taper gradually to zero thickness in the sloped sections. Electrode layers in the active area have a thickness in the range from 200 to 500 Angstroms and sufficient thickness throughout the sloped sections for adequate current carrying capacity. Various acrylates are used for the dielectric layers, the number of layers ranging from a few to many thousands.Apparatus and methods for the fabrication of such capacitors on a high speed, production scale basis employ techniques for the flash evaporation of highly reactive monomers of acrylate dielectric materials. The vapor is controllably directed to a deposition surface for condensation and subsequent curing by a field enhanced gas discharge electron beam source.
    Type: Grant
    Filed: January 4, 1991
    Date of Patent: June 30, 1992
    Assignee: Spectrum Control, Inc.
    Inventors: David G. Shaw, Angelo Yializis, Donald S. Strycker, Mooyoung Ham
  • Patent number: 5097800
    Abstract: A high speed apparatus for forming capacitors includes a vacuum chamber in which is located a carrier defining a continuous surface configured to move at a rate of from about 150 feet per minute to about 600 feet per minute during the forming operation, a metal depositing device, a dielectric depositing device, and a radiation source. The metal depositing device is configured to deposit layers of metal onto the moving surface, and the dielectric depositing device includes (a) a device for atomizing a radiation-curable polyfunctional acrylic monomer to form liquid droplets of the monomer, (b) a heated surface on which the atomized monomer droplets impinge and are flash vaporized, and (c) device for thereafter condensing the flash-vaporized monomer on the metal layers to form a monomer coating on successive layers. The radiation source is positioned for curing successive monomer coatings after each such coating has been deposited, to thereby form a polymer dielectric layer.
    Type: Grant
    Filed: July 10, 1990
    Date of Patent: March 24, 1992
    Assignee: Spectrum Control, Inc.
    Inventors: David G. Shaw, Angelo Yializis, Donald S. Strycker, Mooyoung Ham
  • Patent number: 5032461
    Abstract: A high speed process for forming a multi layered thin film structure in a vacuum wherein each film is less than about four microns thick and the total layers can reach upwards to 4,000 or more. The polymeric layers are formed of a cross linked component selected from the group consisting of polyfunctional acrylates and mixtures of polyfunctional acrylates and monocrylates with the component having a preferable molecular weight of between 200 and 300 and a vapor pressure preferably in excess of 1.times.10.sup.-2 Torr. The polymeric layers may be interleaved with metal layers.
    Type: Grant
    Filed: October 12, 1990
    Date of Patent: July 16, 1991
    Assignee: Spectrum Control, Inc.
    Inventors: David G. Shaw, Angelo Yializis, Donald S. Strycker, Mooyoung Ham