Patents by Inventor Anibal T. DE ALMEIDA

Anibal T. DE ALMEIDA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220346238
    Abstract: Coating inkjet-printed traces of silver nanoparticles (AgNP) ink with a thin layer of eutectic gallium indium (EGaIn) increases the electrical conductivity and significantly improves tolerance to tensile strain. This enhancement is achieved through a room temperature “sintering” process in which the liquid-phase EGaIn alloy binds the AgNP particles to form a continuous conductive trace. These mechanically robust thin-film circuits are well suited for transfer to highly curved and non-developable 3D surfaces as well as skin and other soft deformable substrates.
    Type: Application
    Filed: July 5, 2022
    Publication date: October 27, 2022
    Inventors: Mahmoud TAVAKOLI, Hugo PAISANA, Anibal T. DE ALMEIDA, Carmel MAJIDI
  • Patent number: 11395413
    Abstract: Coating inkjet-printed traces of silver nanoparticles (AgNP) ink with a thin layer of eutectic gallium indium (EGaIn) increases the electrical conductivity and significantly improves tolerance to tensile strain. This enhancement is achieved through a room temperature “sintering” process in which the liquid-phase EGaIn alloy binds the AgNP particles to form a continuous conductive trace. These mechanically robust thin-film circuits are well suited for transfer to highly curved and non-developable 3D surfaces as well as skin and other soft deformable substrates.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: July 19, 2022
    Assignees: CARNEGIE MELLON UNIVERSITY, UNIVERSIDADE DE COIMBRA
    Inventors: Mahmoud Tavakoli, Hugo Paisana, Anibal T. De Almeida, Carmel Majidi
  • Publication number: 20200221580
    Abstract: Coating inkjet-printed traces of silver nanoparticles (AgNP) ink with a thin layer of eutectic gallium indium (EGaIn) increases the electrical conductivity and significantly improves tolerance to tensile strain. This enhancement is achieved through a room temperature “sintering” process in which the liquid-phase EGaIn alloy binds the AgNP particles to form a continuous conductive trace. These mechanically robust thin-film circuits are well suited for transfer to highly curved and non-developable 3D surfaces as well as skin and other soft deformable substrates.
    Type: Application
    Filed: September 13, 2018
    Publication date: July 9, 2020
    Inventors: Mahmoud TAVAKOLI, Hugo PAISANA, Anibal T. DE ALMEIDA, Carmel MAJIDI