Patents by Inventor Animesh Chakravarthy

Animesh Chakravarthy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220380042
    Abstract: The present disclosure addresses the problem of UAVs pursuing a swarm of target UAVs. The target UAVs are flying together as a flock that are initially modeled as a circle having a time-varying radius or an arbitrarily-shaped swarm that may change in size. Guidance of the pursuing UAVs is developed based on a collision cone framework, wherein the pursuing UAVs cooperatively steer the velocity vector of any point in their convex hull, to intercept the target. Also, the problem of capturing a swarm of intruder UAVs using a net manipulated by a team of defense UAVs is disclosed. The intruder UAV swarm may be stationary, in motion, and even maneuver. Collision cones in 3-dimensional space are used to determine the strategy used by the net carrying UAVs to maneuver or manipulate the net in space in order to capture the intruders.
    Type: Application
    Filed: May 6, 2021
    Publication date: December 1, 2022
    Inventor: Animesh Chakravarthy
  • Patent number: 10569876
    Abstract: This document generally describes a safe-passage guidance strategy developed in a relative velocity framework to enable a generic aerial robot execute a precision three-dimensional maneuver through a narrow orifice in a wall. The relative sizes of the robot and the orifice can be such that the orifice is only slightly larger than the robot. The orifice can be approximated as an elliptical shape, and analytical nonlinear guidance laws incorporating state-based switching can be derived. Guidance laws can be used to maneuver the robot through both fixed and moving orifices as well as in scenarios when the orifice is closing with time.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: February 25, 2020
    Assignee: Wichita State University
    Inventors: Animesh Chakravarthy, Debasish Ghose
  • Publication number: 20180290747
    Abstract: This document generally describes a safe-passage guidance strategy developed in a relative velocity framework to enable a generic aerial robot execute a precision three-dimensional maneuver through a narrow orifice in a wall. The relative sizes of the robot and the orifice can be such that the orifice is only slightly larger than the robot. The orifice can be approximated as an elliptical shape, and analytical nonlinear guidance laws incorporating state-based switching can be derived. Guidance laws can be used to maneuver the robot through both fixed and moving orifices as well as in scenarios when the orifice is closing with time.
    Type: Application
    Filed: March 19, 2018
    Publication date: October 11, 2018
    Inventors: Animesh Chakravarthy, Debasish Ghose