Patents by Inventor Aniruddh Jagdish KHANNA

Aniruddh Jagdish KHANNA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11911870
    Abstract: Embodiments herein generally relate to polishing pads and methods of forming polishing pads. A polishing pad includes a plurality of polishing elements. Each polishing element comprises an individual surface that forms a portion of a polishing surface of the polishing pad and one or more sidewalls extending downwardly from the individual surface to define a plurality of channels disposed between the polishing elements. Each of the polishing elements has a plurality of pore-features formed therein. Each of the polishing elements is formed of a pre-polymer composition and a sacrificial material composition. In some cases, a sample of the cured pre-polymer composition has a glass transition temperature (Tg) of about 80° C. or greater. A storage modulus (E?) of the cured pre-polymer composition at a temperature of 80° C. (E?80) can be about 200 MPa or greater.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: February 27, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Sivapackia Ganapathiappan, Rajeev Bajaj, Yingdong Luo, Aniruddh Jagdish Khanna, You Wang, Daniel Redfield
  • Publication number: 20240025009
    Abstract: Polishing pads having discrete and selectively arranged regions of varying porosity within a continuous phase of polymer material are provided herein. In one embodiment a polishing pad features a plurality of polishing elements each comprising a polishing surface and sidewalls extending downwardly from the polishing surface to define a plurality of channels disposed between the polishing elements, wherein one or more of the polishing elements is formed of a continuous phase of polymer material having one or more first regions comprising a first porosity and a second region comprising a second porosity, wherein the second porosity is less than the first porosity.
    Type: Application
    Filed: October 5, 2023
    Publication date: January 25, 2024
    Inventors: Aniruddh Jagdish KHANNA, Jason G. FUNG, Puneet Narendra JAWALI, Rajeev BAJAJ, Adam Wade MANZONIE, Nandan BARADANAHALLI KENCHAPPA, Veera Raghava Reddy KAKIREDDY, Joonho AN, Jaeseok KIM, Mayu YAMAMURA
  • Patent number: 11813712
    Abstract: Polishing pads having discrete and selectively arranged regions of varying porosity within a continuous phase of polymer material are provided herein. In one embodiment a polishing pad features a plurality of polishing elements each comprising a polishing surface and sidewalls extending downwardly from the polishing surface to define a plurality of channels disposed between the polishing elements, wherein one or more of the polishing elements is formed of a continuous phase of polymer material having one or more first regions comprising a first porosity and a second region comprising a second porosity, wherein the second porosity is less than the first porosity.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: November 14, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Aniruddh Jagdish Khanna, Jason G. Fung, Puneet Narendra Jawali, Rajeev Bajaj, Adam Wade Manzonie, Nandan Baradanahalli Kenchappa, Veera Raghava Reddy Kakireddy, Joonho An, Jaeseok Kim, Mayu Yamamura
  • Patent number: 11724362
    Abstract: Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a polishing pad with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure thus may provide an advanced polishing pad that has discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, and curing agents. For example, the advanced polishing pad may be formed from a plurality of polymeric layers, by the automated sequential deposition of at least one resin precursor composition followed by at least one curing step, wherein each layer may represent at least one polymer composition, and/or regions of different compositions.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: August 15, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Rajeev Bajaj, Daniel Redfield, Mahendra C. Orilall, Boyi Fu, Aniruddh Jagdish Khanna, Jason G. Fung, Ashwin Chockalingam, Mayu Yamamura, Veera Raghava Reddy Kakireddy, Gregory E. Menk, Nag B. Patibandla
  • Publication number: 20230080430
    Abstract: Embodiments herein generally relate to polishing pads and methods of forming polishing pads. A polishing pad includes a plurality of polishing elements. Each polishing element comprises an individual surface that forms a portion of a polishing surface of the polishing pad and one or more sidewalls extending downwardly from the individual surface to define a plurality of channels disposed between the polishing elements. Each of the polishing elements has a plurality of pore-features formed therein. Each of the polishing elements is formed of a pre-polymer composition and a sacrificial material composition. In some cases, a sample of the cured pre-polymer composition has a glass transition temperature (Tg) of about 80° C. or greater. A storage modulus (E?) of the cured pre-polymer composition at a temperature of 80° C. (E?80) can be about 200 MPa or greater.
    Type: Application
    Filed: September 10, 2021
    Publication date: March 16, 2023
    Inventors: Sivapackia GANAPATHIAPPAN, Rajeev Bajaj, Yingdong Luo, Aniruddh Jagdish Khanna, You Wang, Daniel Redfield
  • Publication number: 20220055181
    Abstract: The present disclosure relates to retaining rings that include tunable chemical, material and structural properties, improved structural and fluid transport configurations and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a retaining ring with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure provide an advanced retaining ring that has discrete features and geometries, formed from at least two different materials that are formed from one or more polymers. The layers and/or regions of the advanced retaining ring may include a composite material structure, such as a polymer that contains at least one filler, such as metals, semimetal oxides, carbides, nitrides and/or polymer particles.
    Type: Application
    Filed: August 19, 2021
    Publication date: February 24, 2022
    Inventors: Aniruddh Jagdish Khanna, Daniel Redfield, Ehud Chatow, Kenneth Mason, Steven Turner, Rajeev Bajaj, Kieran Joseph Rynne, Periya G. Gopalan
  • Publication number: 20210187693
    Abstract: Polishing pads having discrete and selectively arranged regions of varying porosity within a continuous phase of polymer material are provided herein. In one embodiment a polishing pad features a plurality of polishing elements each comprising a polishing surface and sidewalls extending downwardly from the polishing surface to define a plurality of channels disposed between the polishing elements, wherein one or more of the polishing elements is formed of a continuous phase of polymer material having one or more first regions comprising a first porosity and a second region comprising a second porosity, wherein the second porosity is less than the first porosity.
    Type: Application
    Filed: September 29, 2020
    Publication date: June 24, 2021
    Inventors: Aniruddh Jagdish KHANNA, Jason G. FUNG, Puneet Narendra JAWALI, Rajeev BAJAJ, Adam Wade MANZONIE, Nandan BARADANAHALLI KENCHAPPA, Veera Raghava Reddy KAKIREDDY, Joonho AN, Jaeseok KIM, Mayu YAMAMURA
  • Publication number: 20210107116
    Abstract: Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a polishing pad with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure thus may provide an advanced polishing pad that has discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, and curing agents. For example, the advanced polishing pad may be formed from a plurality of polymeric layers, by the automated sequential deposition of at least one resin precursor composition followed by at least one curing step, wherein each layer may represent at least one polymer composition, and/or regions of different compositions.
    Type: Application
    Filed: December 8, 2020
    Publication date: April 15, 2021
    Inventors: Rajeev BAJAJ, Daniel REDFIELD, Mahendra C. ORILALL, Boyi FU, Aniruddh Jagdish KHANNA, Jason G. FUNG, Ashwin CHOCKALINGAM, Mayu YAMAMURA, Veera Raghava Reddy KAKIREDDY, Gregory E. MENK, Nag B. PATIBANDLA
  • Publication number: 20200135517
    Abstract: Chemical mechanical polishing (CMP) apparatus and methods for manufacturing CMP apparatus are provided herein. CMP apparatus may include polishing pads, polishing head retaining rings, and polishing head membranes, among others, and the CMP apparatus may be manufactured via additive manufacturing processes, such as three dimensional (3D) printing processes. The CMP apparatus may include wireless communication apparatus components integrated therein. Methods of manufacturing CMP apparatus include 3D printing wireless communication apparatus into a polishing pad and printing a polishing pad with a recess configured to receive a preformed wireless communication apparatus.
    Type: Application
    Filed: December 31, 2019
    Publication date: April 30, 2020
    Inventors: Jason G. FUNG, Rajeev BAJAJ, Daniel REDFIELD, Aniruddh Jagdish KHANNA, Mario CORNEJO, Gregory E. MENK, JOHN WATKINS