Patents by Inventor Anissa Bendjeriou-Sedjerari

Anissa Bendjeriou-Sedjerari has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230078677
    Abstract: A fibrous hierarchical zeolite includes a framework comprising aluminum atoms, silicon atoms, and oxygen atoms, the framework further comprising a plurality of micropores and a plurality of mesopores. The framework comprises no Brønsted acid activity.
    Type: Application
    Filed: August 26, 2021
    Publication date: March 16, 2023
    Applicants: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Robert Peter Hodgkins, Omer Refa Koseoglu, Jean-Marie Maurice Basset, Kuo-Wei Huang, Anissa Bendjeriou Sedjerari, Sathiyamoorthy Murugesan, Manoj Kumar Gangwar, Rajesh Kumar Parsapur
  • Publication number: 20230082855
    Abstract: A functionalized fibrous hierarchical zeolite includes a framework comprising aluminum atoms, silicon atoms, and oxygen atoms, the framework further comprising a plurality of micropores and a plurality of mesopores. The functionalized fibrous hierarchical zeolite is functionalized with at least one amine. A plurality of nanoparticles comprising platinum are immobilized on the framework.
    Type: Application
    Filed: August 26, 2021
    Publication date: March 16, 2023
    Applicants: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Robert Peter Hodgkins, Omer Refa Koseoglu, Jean-Marie Maurice Basset, Kuo-Wei Huang, Anissa Bendjeriou Sedjerari, Sathiyamoorthy Murugesan, Manoj Kumar Gangwar
  • Publication number: 20230085197
    Abstract: A functionalized fibrous hierarchical zeolite includes a framework comprising aluminum atoms, silicon atoms, and oxygen atoms, the framework further comprising a plurality of micropores and a plurality of mesopores. The functionalized fibrous hierarchical zeolite is functionalized with at least one terminal amine bonded to a silicon atom. Terminal organometallic functionalities are bonded to a nitrogen atom of the at least one terminal amine, the terminal organometallic functionalities comprising a platinum atom.
    Type: Application
    Filed: August 26, 2021
    Publication date: March 16, 2023
    Applicants: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Robert Peter Hodgkins, Omer Refa Koseoglu, Jean-Marie Maurice Basset, Kuo-Wei Huang, Anissa Bendjeriou Sedjerari, Sathiyamoorthy Murugesan, Manoj Kumar Gangwar
  • Publication number: 20230072575
    Abstract: A functionalized fibrous hierarchical zeolite includes a framework comprising aluminum atoms, silicon atoms, and oxygen atoms, the framework further comprising a plurality of micropores and a plurality of mesopores. The functionalized fibrous hierarchical zeolite is functionalized with at least one amine. A plurality of nanoparticles comprising nickel are immobilized on the framework.
    Type: Application
    Filed: August 26, 2021
    Publication date: March 9, 2023
    Applicants: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Robert Peter Hodgkins, Omer Refa Koseoglu, Jean-Marie Maurice Basset, Kuo-Wei Huang, Anissa Bendjeriou-Sedjerari, Sathiyamoorthy Murugesan, Moussab Harb, Manoj Kumar Gangwar
  • Patent number: 11596931
    Abstract: Modified crystalline zeolite materials have a zeolite framework with both tetra-coordinate Lewis aluminum single sites and Brønsted aluminum sites. The tetra-coordinate Lewis aluminum single sites include aluminum atoms covalently bonded to a variable group and to two oxygen atoms and further coordinated to a third oxygen atom. The variable group may be alkyl, hydride, or hydroxyl. Methods for incorporating tetra-coordinate Lewis aluminum single sites into a crystalline zeolite material include contacting the crystalline zeolite material with a dialkylaluminum hydride R2AlH, where each R is alkyl, to react the dialkylaluminum hydride with the zeolite framework and form tetra-coordinate alkyl aluminum single sites. Heating the alkyl-aluminum zeolite induces ?-hydride elimination of the alkyl groups, whereby tetra-coordinate aluminum hydride single sites are formed.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: March 7, 2023
    Assignees: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Robert Peter Hodgkins, Omer Refa Koseoglu, Jean-Marie Basset, Kuo-Wei Huang, Anissa Bendjeriou-Sedjerari, Sathiyamoorthy Murugesan, Rajesh Parsapur
  • Publication number: 20230069248
    Abstract: A functionalized fibrous hierarchical zeolite includes a framework comprising aluminum atoms, silicon atoms, and oxygen atoms, the framework further comprising a plurality of micropores and a plurality of mesopores. A plurality of nanoparticles comprising platinum are immobilized on the framework.
    Type: Application
    Filed: August 26, 2021
    Publication date: March 2, 2023
    Applicants: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Robert Peter Hodgkins, Omer Refa Koseoglu, Jean-Marie Maurice Basset, Kuo-Wei Huang, Anissa Bendjeriou Sedjerari, Sathiyamoorthy Murugesan, Manoj Kumar Gangwar
  • Patent number: 11591230
    Abstract: Disclosed herein are modified zeolites and methods for making modified zeolites. In one or more embodiments disclosed herein, a modified zeolite may include a microporous framework including a plurality of micropores having diameters of less than or equal to 2 nm. The microporous framework includes at least silicon atoms and oxygen atoms. The modified zeolite may further include organometallic moieties each bonded to bridging oxygen atoms. The organometallic moieties include a hafnium atom. The hafnium atom is bonded to a bridging oxygen atom, and bridging oxygen atom bridges the hafnium atom of the organometallic moiety and a silicon atom of the microporous framework.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: February 28, 2023
    Assignees: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Robert Peter Hodgkins, Omer Refa Koseoglu, Jean-Marie Maurice Basset, Kuo-Wei Huang, Anissa Bendjeriou Sedjerari, Manoj K. Gangwar, Sathiyamoorthy Murugesan
  • Patent number: 11591229
    Abstract: Disclosed herein are modified zeolites and methods for making modified zeolites. In one or more embodiments disclosed herein, a modified zeolite may include a microporous framework comprising a plurality of micropores having diameters of less than or equal to 2 nm. The microporous framework may include at least silicon atoms and oxygen atoms. The modified zeolite may further include organometallic moieties each bonded to bridging oxygen atoms. The organometallic moieties may include a titanium atom. The titanium atom may be bonded to a bridging oxygen atom, and the bridging oxygen atom may bridge the titanium atom of the organometallic moiety and a silicon atom of the microporous framework.
    Type: Grant
    Filed: April 14, 2021
    Date of Patent: February 28, 2023
    Assignees: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Robert Peter Hodgkins, Omer Refa Koseoglu, Jean-Marie Maurice Basset, Kuo-Wei Huang, Anissa Bendjeriou Sedjerari, Manoj K. Gangwar, Sathiyamoorthy Murugesan
  • Patent number: 11565942
    Abstract: Disclosed herein are modified zeolites and methods for making modified zeolites. In one or more embodiments disclosed herein, a modified zeolite may include a microporous framework including a plurality of micropores having diameters of less than or equal to 2 nm. The microporous framework may include at least silicon atoms and oxygen atoms. The modified zeolite may further include organometallic moieties each bonded to bridging oxygen atoms. The organometallic moieties may include a platinum atom. The platinum atom may be bonded to a bridging oxygen atom, and the bridging oxygen atom may bridge the platinum atom of the organometallic moiety and a silicon atom of the microporous framework.
    Type: Grant
    Filed: April 14, 2021
    Date of Patent: January 31, 2023
    Assignees: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Robert Peter Hodgkins, Omer Refa Koseoglu, Jean-Marie Maurice Basset, Kuo-Wei Huang, Anissa Bendjeriou Sedjerari, Manoj K. Gangwar, Sathiyamoorthy Murugesan
  • Publication number: 20220348474
    Abstract: Disclosed herein are modified zeolites and methods for making modified zeolites. In one or more embodiments disclosed herein, a modified zeolite may include a microporous framework including a plurality of micropores having diameters of less than or equal to 2 nm. The microporous framework may include at least silicon atoms and oxygen atoms. The modified zeolite may further include organometallic moieties each bonded to a nitrogen atom of a secondary amine functional group including a nitrogen atom and a hydrogen atom. The organometallic moieties may include a zirconium atom that is bonded to the nitrogen atom of the secondary amine functional group. The nitrogen atom of the secondary amine function group may bridge the zirconium atom of the organometallic moiety and a silicon atom of the microporous framework.
    Type: Application
    Filed: April 14, 2021
    Publication date: November 3, 2022
    Applicants: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Robert Peter Hodgkins, Omer Refa Koseoglu, Jean-Marie Maurice Basset, Kuo-Wei Huang, Anissa Bendjeriou Sedjerari, Sathiyamoorthy Murugesan, Manoj K. Gangwar
  • Publication number: 20220340432
    Abstract: Disclosed herein are modified zeolites and methods for making modified zeolites. In one or more embodiments disclosed herein, a modified zeolite may include a microporous framework including a plurality of micropores having diameters of less than or equal to 2 nm. The microporous framework may include at least silicon atoms and oxygen atoms. The modified zeolite may further include organometallic moieties each bonded to bridging oxygen atoms. The organometallic moieties may include a platinum atom. The platinum atom may be bonded to a bridging oxygen atom, and the bridging oxygen atom may bridge the platinum atom of the organometallic moiety and a silicon atom of the microporous framework.
    Type: Application
    Filed: April 14, 2021
    Publication date: October 27, 2022
    Applicants: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Robert Peter Hodgkins, Omer Refa Koseoglu, Jean-Marie Maurice Basset, Kuo-Wei Huang, Anissa Bendjeriou Sedjerari, Manoj K. Gangwar, Sathiyamoorthy Murugesan
  • Publication number: 20220340431
    Abstract: Disclosed herein are modified zeolites and methods for making modified zeolites. In one or more embodiments disclosed herein, a zeolite may include a microporous framework comprising a plurality of micropores having diameters of less than or equal to 2 nm. The microporous framework may include at least silicon atoms and oxygen atoms. The modified zeolite may further include organometallic moieties each bonded to bridging oxygen atoms. The organometallic moieties may include a zirconium atom. The zirconium atom may be bonded to a bridging oxygen atom, and the bridging oxygen atom may bridge the zirconium atom of the organometallic moiety and a silicon atom of the microporous framework.
    Type: Application
    Filed: April 14, 2021
    Publication date: October 27, 2022
    Applicants: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Robert Peter Hodgkins, Omer Refa Koseoglu, Jean-Marie Maurice Basset, Kuo-Wei Huang, Anissa Bendjeriou Sedjerari, Manoj K. Gangwar, Sathiyamoorthy Murugesan
  • Publication number: 20220340434
    Abstract: Disclosed herein are modified zeolites and methods for making modified zeolites. In one or more embodiments disclosed herein, a modified zeolite may include a microporous framework including a plurality of micropores having diameters of less than or equal to 2 nm. The microporous framework may include at least silicon atoms and oxygen atoms. The modified zeolite may further include organometallic moieties each bonded to a nitrogen atom of a secondary amine functional group comprising a nitrogen atom and a hydrogen atom. The organometallic moieties may comprise a hafnium atom that is bonded to the nitrogen atom of the secondary amine functional group. The nitrogen atom of the secondary amine function group may bridge the hafnium atom of the organometallic moiety and a silicon atom of the microporous framework.
    Type: Application
    Filed: April 14, 2021
    Publication date: October 27, 2022
    Applicants: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Robert Peter Hodgkins, Omer Refa Koseoglu, Jean-Marie Maurice Basset, Kue-Wei Huang, Anissa Bendjeriou Sedjerari, Sathiyamoorthy Murugesan, Manouj K. Gangwar
  • Publication number: 20220340433
    Abstract: Disclosed herein are modified zeolites and methods for making modified zeolites. In one or more embodiments disclosed herein, a modified zeolite may include a microporous framework comprising a plurality of micropores having diameters of less than or equal to 2 nm. The microporous framework may include at least silicon atoms and oxygen atoms. The modified zeolite may further include organometallic moieties each bonded to bridging oxygen atoms. The organometallic moieties may include a titanium atom. The titanium atom may be bonded to a bridging oxygen atom, and the bridging oxygen atom may bridge the titanium atom of the organometallic moiety and a silicon atom of the microporous framework.
    Type: Application
    Filed: April 14, 2021
    Publication date: October 27, 2022
    Applicants: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Robert Peter Hodgkins, Omer Refa Koseoglu, Jean-Marie Maurice Basset, Kuo-Wei Huang, Anissa Bendjeriou Sedjerari, Manoj K. Gangwar, Sathiyamoorthy Murugesan
  • Publication number: 20220340435
    Abstract: Embodiments of the present disclosure relate to zeolites and method for making such zeolites. According to embodiments disclosed herein, a zeolite may have a microporous framework including a plurality of micropores having diameters of less than or equal to 2 nm and a plurality of mesopores having diameters of greater than 2 nm and less than or equal to 50 nm. The microporous framework may include an MFI framework type. The microporous framework may include silicon atoms, aluminum atoms, oxygen atoms, and transition metal atoms. The transition metal atoms may be dispersed throughout the entire microporous framework.
    Type: Application
    Filed: April 14, 2021
    Publication date: October 27, 2022
    Applicants: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Robert Peter Hodgkins, Omer Refa Koseoglu, Kue-Wei Huang, Jean-Marie Maurice Basset, Yu Han, Rajesh Parsapur, Anissa Bendjeriou Sedjerari, Sathiyamoorthy Murugesan
  • Publication number: 20220332591
    Abstract: Disclosed herein are modified zeolites and methods for making modified zeolites. In one or more embodiments disclosed herein, a modified zeolite may include a microporous framework including a plurality of micropores having diameters of less than or equal to 2 nm. The microporous framework may include at least silicon atoms and oxygen atoms. The modified zeolite may further include organometallic moieties each bonded to a nitrogen atom of a secondary amine functional group including a nitrogen atom and a hydrogen atom. The organometallic moieties may include a titanium atom that is bonded to the nitrogen atom of the secondary amine functional group. The nitrogen atom of the secondary amine function group may bridge the titanium atom of the organometallic moiety and a silicon atom of the microporous framework.
    Type: Application
    Filed: April 14, 2021
    Publication date: October 20, 2022
    Applicants: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Robert Peter Hodgkins, Omer Refa Koseoglu, Jean-Marie Maurice Basset, Kue-Wei Huang, Sathiyamoorthy Murugesan, Anissa Bendjeriou Sedjerari, Rajesh Parsapur, Manouj K. Gangwar
  • Publication number: 20220332593
    Abstract: Disclosed herein are modified zeolites and methods for making modified zeolites. In one or more embodiments disclosed herein, a modified zeolite may include a microporous framework including a plurality of micropores having diameters of less than or equal to 2 nm. The microporous framework includes at least silicon atoms and oxygen atoms. The modified zeolite may further include organometallic moieties each bonded to bridging oxygen atoms. The organometallic moieties include a hafnium atom. The hafnium atom is bonded to a bridging oxygen atom, and bridging oxygen atom bridges the hafnium atom of the organometallic moiety and a silicon atom of the microporous framework.
    Type: Application
    Filed: April 15, 2021
    Publication date: October 20, 2022
    Applicants: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Robert Peter Hodgkins, Omer Refa Koseoglu, Jean-Marie Maurice Basset, Kue-Wei Huang, Anissa Bendjeriou Sedjerari, Manoj K. Gangwar, Sathiyamoorthy Murugesan
  • Publication number: 20220332590
    Abstract: Disclosed herein are modified zeolites and methods for making modified zeolites. In one or more embodiments disclosed herein, a modified zeolite includes a microporous framework including a plurality of micropores having diameters of less than or equal to 2 nm and organometallic moieties each bonded to bridging oxygen atoms. The microporous framework includes at least silicon atoms and oxygen atoms. The organometallic moieties include a metal atom and a ring structure including the metal atom, a nitrogen atom, and one or more carbon atoms. The metal atom may be bonded to a bridging oxygen atom, and wherein the bridging oxygen atom bridges the metal atom of the organometallic moiety and a silicon atom of the microporous framework.
    Type: Application
    Filed: April 14, 2021
    Publication date: October 20, 2022
    Applicants: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Robert Peter Hodgkins, Omer Refa Koseoglu, Jean-Marie Maurice Basset, Kuo-Wei Huang, Anissa Bendjeriou Sedjerari, Manoj K. Gangwar, Sathiyamoorthy Murugesan
  • Publication number: 20220332592
    Abstract: Disclosed herein are amine functionalized zeolites and methods for making amine functionalized zeolites. In one or more embodiments disclosed herein, an amine functionalized zeolite may include a microporous framework including a plurality of micropores having diameters of less than or equal to 2 nm. The microporous framework may include at least silicon atoms and oxygen atoms. The amine functionalized zeolite may further include a plurality of mesopores having diameters of greater than 2 nm and less than or equal to 50 nm and one or more of isolated terminal primary amine functionalities bonded to silicon atoms of the microporous framework or silazane functionalities, where the nitrogen atom of the silazane bridges two silicon atoms of the microporous framework.
    Type: Application
    Filed: April 14, 2021
    Publication date: October 20, 2022
    Applicants: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Robert Peter Hodgkins, Omer Refa Koseoglu, Jean-Marie Maurice Basset, Kue-Wei Huang, Anissa Bendjeriou Sedjerari, Sathiyamoorthy Murugesan, Rajesh Parsapur
  • Publication number: 20220072521
    Abstract: Modified crystalline zeolite materials have a zeolite framework with both tetra-coordinate Lewis aluminum single sites and Brønsted aluminum sites. The tetra-coordinate Lewis aluminum single sites include aluminum atoms covalently bonded to a variable group and to two oxygen atoms and further coordinated to a third oxygen atom. The variable group may be alkyl, hydride, or hydroxyl. Methods for incorporating tetra-coordinate Lewis aluminum single sites into a crystalline zeolite material include contacting the crystalline zeolite material with a dialkylaluminum hydride R2AlH, where each R is alkyl, to react the dialkylaluminum hydride with the zeolite framework and form tetra-coordinate alkyl aluminum single sites. Heating the alkyl-aluminum zeolite induces ?-hydride elimination of the alkyl groups, whereby tetra-coordinate aluminum hydride single sites are formed.
    Type: Application
    Filed: September 9, 2020
    Publication date: March 10, 2022
    Applicants: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Robert Peter Hodgkins, Omer Refa Koseoglu, Jean-Marie Basset, Kuo-Wei Huang, Anissa Bendjeriou-Sedjerari, Sathiyamoorthy Murugesan, Rajesh Parsapur