Patents by Inventor Ankit Mahajan

Ankit Mahajan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10971468
    Abstract: Processes for automatic registration between a solid circuit die and electrically conductive interconnects, and articles or devices made by the same are provided. The solid circuit die is disposed on a substrate with contact pads aligned with channels on the substrate. Electrically conductive traces are formed by flowing a conductive liquid in the channels toward the contact pads to obtain the automatic registration.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: April 6, 2021
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Ankit Mahajan, Mikhail L. Pekurovsky, Matthew S. Stay, Daniel J. Theis, Ann M. Gilman, Shawn C. Dodds, Thomas J. Metzler, Matthew R. D. Smith, Roger W. Barton, Joseph E. Hernandez, Saagar A. Shah, Kara A. Meyers, James Zhu, Teresa M. Goeddel, Lyudmila A. Pekurovsky, Jonathan W. Kemling, Jeremy K. Larsen, Jessica Chiu, Kayla C. Niccum
  • Publication number: 20210035875
    Abstract: Processes for automatic registration between a solid circuit die and electrically conductive interconnects, and articles or devices made by the same are provided. The solid circuit die is disposed at a registration area of a substrate. Fluid channels extend into the registration area and have a portion underneath the bottom surface of the solid circuit die. Electrically conductive traces are formed by flowing a conductive liquid in the channels toward contact pads on the bottom surface of the circuit die to obtain the automatic registration.
    Type: Application
    Filed: February 27, 2019
    Publication date: February 4, 2021
    Inventors: Ankit Mahajan, Mikhail L. Pekurovsky, Saagar A. Shah, Thomas J. Metzler, Kara A. Meyers, James Zhu, Teresa M. Goeddel, Lyudmila A. Pekurovsky, Jonathan W. Kemling, Jeremy K. Larsen
  • Publication number: 20200379963
    Abstract: Methods for cardinality estimation feedback loops in query processing are performed by systems and devices. A query host executes queries against data sources via an engine based on estimated cardinalities, and query monitors generate event signals during and at completion of execution. Event signals include indicia of actual data cardinality, runtime statistics, and query parameters in query plans, and are routed to analyzers of a feedback optimizer where event signal information is analyzed. The feedback optimizer utilizes analysis results to generate change recommendations as feedback for later executions of the queries, or similar queries, performed by a query optimizer of the query host. The query host stores change recommendations, and subsequent queries are monitored for the same or similar queries to which change recommendations are applied to query plans for execution and observance by the query monitors. Change recommendations are optionally viewed and selected via a user interface.
    Type: Application
    Filed: May 31, 2019
    Publication date: December 3, 2020
    Inventors: Pedro M. Lopes, Vasileios Papadimos, Joel L. Redman, JR., Gjorgji Gjeorgjievski, Joseph I. Sack, In-Jerng Choe, Ankit Mahajan, Nan Xing, Alexey Eksarevskiy, Chandrashekhar Kadiam
  • Patent number: 10854355
    Abstract: A stretchable conductor includes a substrate with a first major surface and an elongate wire, wherein the substrate is an elastomeric material, the elongate wire is on the first major surface of the substrate, the wire includes a first end and a second end, and further includes at least one arcuate region between the first end and the second end. At least one portion of the arcuate region of the wire in the region has a first surface area portion embedded in the surface of the substrate and a second surface area portion unembedded on the substrate and exposed in an amount sufficient to render at least an area of the substrate in the region electrically conductive. The unembedded second surface portion of the arcuate region may lie above or below a plane of the substrate. Additionally, different methods of preparing said stretchable conductor are disclosed. Composite articles including said stretchable conductor in durable electrical contact with a conductive fabric are also disclosed.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: December 1, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Ankit Mahajan, Jr., James Zhu, Saagar A. Shah, Mikhail L. Pekurovsky, Vivek Krishnan, Kevin T. Reddy, Christopher B. Walker, Jr., Michael A. Kropp, Kara A. Meyers, Teresa M. Goeddel, Thomas J. Metzler, Jonathan W. Kemling, Roger W. Barton
  • Publication number: 20200322475
    Abstract: According to an embodiment, there is provided an electronic device comprising: a memory storing instructions; and at least one processor configured to execute the instructions to: generate state information regarding a device state of the electronic device of a first user and communication information regarding communications of the first user with a second user; transmitting the state information and the communication information to a server or an electronic device of the second user, wherein the state information and the communication information are used to determine communication availability of the first user and to provide the second user with information regarding the communication availability of the first user.
    Type: Application
    Filed: December 4, 2018
    Publication date: October 8, 2020
    Inventors: Sunil RATHOUR, Nitesh GOYAL, Pratush Kumar SRIVASTAVA, Ankit AGARWAL, Ekta Anil Pardeep SACHDEV, Ridhima JAISWAL, Reetika MITTAL, Vobbilisetty SUSHANT, Desh Deepak AGARWAL, Anuj MAHAJAN, Aasheesh NAIN
  • Publication number: 20200148635
    Abstract: The present invention relates to 4-substituted amidine derivatives of the general formula (I), wherein A1-A4, D, L, Q, R7, R7? and integer's v and w have the meanings as defined in description. The invention further relates to methods for their preparation and use of said compounds to fight undesired phytopathogenic microorganisms, and agents for said purpose, comprising said amidine derivatives, all according to the invention. This invention further relates to a method for controlling undesired phytopathogenic microorganisms by application of said 4-substituted amidine derivatives of general formula (I) to such undesired microorganisms and/or to their habitat, according to the invention.
    Type: Application
    Filed: May 17, 2018
    Publication date: May 14, 2020
    Applicant: PI INDUSTRIES LTD.
    Inventors: Maruti Naik, Vishal A. Mahajan, Manoj G. Kale, Sathiyamoorthi Sivakumar, Ankit Kumar Jain, Sulur G. Manjunatha, Santosh Shridhar Autkar, Ruchi Garg, Rupesh Kumar Mishra, Hagalavadi M. Venkatesha, Konstantin Poschnary, Alexander G.M. KLAUSENER
  • Publication number: 20200105440
    Abstract: A stretchable conductor includes a substrate with a first major surface and an elongate wire, wherein the substrate is an elastomeric material, the elongate wire is on the first major surface of the substrate, the wire includes a first end and a second end, and further includes at least one arcuate region between the first end and the second end. At least one portion of the arcuate region of the wire in the region has a first surface area portion embedded in the surface of the substrate and a second surface area portion unembedded on the substrate and exposed in an amount sufficient to render at least an area of the substrate in the region electrically conductive. The unembedded second surface portion of the arcuate region may lie above or below a plane of the substrate. Additionally, different methods of preparing said stretchable conductor are disclosed. Composite articles including said stretchable conductor in durable electrical contact with a conductive fabric are also disclosed.
    Type: Application
    Filed: June 7, 2018
    Publication date: April 2, 2020
    Inventors: Ankit Mahajan, Jr., James Zhu, Saagar A. Shah, Mikhail L. Pekurovsky, Vivek Krishnan, Kevin T. Reddy, Christopher B. Walker, Jr., Michael A. Kropp, Kara A. Meyers, Teresa M. Goeddel, Thomas J. Metzler, Jonathan W. Kemling, Roger W. Barton
  • Publication number: 20200105991
    Abstract: Electronic devices including a layer of polymeric material and solid semiconductor dies partially embedded in the layer are provided. The dies have first ends projecting away from the first major surface of the layer. The electronic devices can be formed by sinking the first ends of the dies into a major surface of a liner. A flowable polymeric material is filled into the space between the dies and solidified to form the layer of polymeric material. The first ends of the dies are exposed by delaminating the liner from the first ends of the dies. Electrical conductors are provided on the layer to connect the first ends of the dies.
    Type: Application
    Filed: March 22, 2018
    Publication date: April 2, 2020
    Inventors: Ankit Mahajan, Mikhail L. Pekurovsky, Matthew S. Stay, Shawn C. Dodds, Thomas J. Metzler, Matthew R.D. Smith, Saagar A. Shah, Jae Yong Lee, James F. Poch, Roger W. Barton
  • Publication number: 20190273061
    Abstract: Processes for automatic registration between a solid circuit die and electrically conductive interconnects, and articles or devices made by the same are provided. The solid circuit die is disposed on a substrate with contact pads aligned with channels on the substrate. Electrically conductive traces are formed by flowing a conductive liquid in the channels toward the contact pads to obtain the automatic registration.
    Type: Application
    Filed: November 16, 2017
    Publication date: September 5, 2019
    Inventors: Ankit Mahajan, Mikhail L. Pekurovsky, Matthew S. Stay, Daniel J. Theis, Ann M. Gillman, Shawn C. Dodds, Thomas J. Metzler, Matthew R.D. Smith, Roger W. Barton, Joseph E. Hernandez, Saagar A. Shah, Kara A. Meyers, James Zhu, Teresa M. Goeddel, Lyudmila A. Pekurovsky, Jonathan W. Kemling, Jeremy K. Larsen, Jessica Chiu, Kayla C. Niccum
  • Publication number: 20190181321
    Abstract: At least some aspects of the present disclosure direct to a flexible thermoelectric module. The thermoelectric module includes a flexible substrate, a plurality of p-type thermoelectric elements and a plurality of n-type thermoelectric elements, a first set of connectors, and a second set of connectors. The substrate includes a plurality of vias filled with an electrically conductive material or thermoelectric elements. In some cases, the plurality of p-type thermoelectric elements and the plurality of n-type thermoelectric elements are disposed on the flexible substrate.
    Type: Application
    Filed: June 22, 2017
    Publication date: June 13, 2019
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Jae Yong Lee, Roger W. Barton, Donato G. Caraig, Ankit Mahajan, Ravi Palaniswamy, James F. Poch, Michael W. Dolezal
  • Publication number: 20190181322
    Abstract: At least some aspects of the present disclosure direct to a thermoelectric tape. The thermoelectric tape comprises a substrate having a plurality of vias, a series of flexible thermoelectric modules connected in parallel, and two conductive buses running longitudinally along the thermoelectric tape. Each flexible thermoelectric module includes a plurality of p-type thermoelectric elements and a plurality of n-type thermoelectric elements. The series of flexible thermoelectric modules are electrically connected to the conductive buses.
    Type: Application
    Filed: June 12, 2017
    Publication date: June 13, 2019
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Jae Yong Lee, Roger W. Barton, Donato G. Caraig, Ankit Mahajan, Ravi Palaniswamy, James F. Poch
  • Patent number: 9401306
    Abstract: A manufacturing process, which we term Self-Aligned Capillarity-Assisted Lithography for manufacturing devices having nano-scale or micro-scale features, such as flexible electronic circuits, is described.
    Type: Grant
    Filed: November 11, 2014
    Date of Patent: July 26, 2016
    Assignee: REGENTS OF THE UNIVERSITY OF MINNESOTA
    Inventors: Ankit Mahajan, Carl Daniel Frisbie, Lorraine F. Francis
  • Publication number: 20150130069
    Abstract: A manufacturing process, which we term Self-Aligned Capillarity-Assisted Lithography for manufacturing devices having nano-scale or micro-scale features, such as flexible electronic circuits, is described.
    Type: Application
    Filed: November 11, 2014
    Publication date: May 14, 2015
    Inventors: Ankit Mahajan, Carl Daniel Frisbie, Lorraine F. Francis