Patents by Inventor Ankur D. Jariwala

Ankur D. Jariwala has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11883778
    Abstract: An acid gas purification system is described herein that includes a primary membrane system with a CO2- and H2S-enriched permeate stream effluent and a hydrocarbon stream effluent; a first compression stage arranged to receive the CO2- and H2S-enriched permeate stream and produce a compressed stream; and a cryogenic separation system to receive the compressed stream, the cryogenic separation system including a cooler followed by a fractionator, wherein the fractionator produces a CO2- and H2S liquid stream and a hydrocarbon gas stream.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: January 30, 2024
    Assignee: CAMERON INTERNATIONAL CORPORATION
    Inventor: Ankur D. Jariwala
  • Publication number: 20230392233
    Abstract: Described herein are methods of recovering a target ion, such as lithium, from earth materials. The methods include leaching the target ion from an earth material such as a clay to form a target solution and extracting the target ion from the dilute lithium solution using a extraction process selective for the target ion to yield a concentrate which can be converted to a product.
    Type: Application
    Filed: June 5, 2023
    Publication date: December 7, 2023
    Inventors: Dominic Vincent Perroni, Florence Binet, Ankur D. Jariwala
  • Publication number: 20230349551
    Abstract: Disclosed herein are systems, apparatuses, and methods for using a sensed combustion zone temperature to continuously control combustion of a first (main) gas within an enclosed combustor. The combustor is in fluid communication with a first gas line carrying the first gas, a second gas line independent of the first gas line carrying a second (assist) gas having a higher heating value than the first gas, and air dampers providing draft or assist air. The first gas may be vapors from a production source or tank. A computer control system monitors the combustion zone temperature of the enclosed combustor as sensed by a sensor in electronic communication with the computer control system and controls the combustion zone temperature by changing a condition of a first gas line valve of the first gas line, a second gas line valve of the second gas line, and the air dampers.
    Type: Application
    Filed: June 27, 2023
    Publication date: November 2, 2023
    Inventors: Rafiqul Khan, Herman C. Hatfield, II, Ankur D. Jariwala, Gary W. Sams
  • Patent number: 11725813
    Abstract: Disclosed herein are systems, apparatuses, and methods for using a sensed combustion zone temperature to continuously control combustion of a first (main) gas within an enclosed combustor. The combustor is in fluid communication with a first gas line carrying the first gas, a second gas line independent of the first gas line carrying a second (assist) gas having a higher heating value than the first gas, and air dampers providing draft or assist air. The first gas may be vapors from a production source or tank. A computer control system monitors the combustion zone temperature of the enclosed combustor as sensed by a sensor in electronic communication with the computer control system and controls the combustion zone temperature by changing a condition of a first gas line valve of the first gas line, a second gas line valve of the second gas line, and the air dampers.
    Type: Grant
    Filed: January 4, 2018
    Date of Patent: August 15, 2023
    Assignee: CAMERON INTERNATIONAL CORPORATION
    Inventors: Rafiqul Khan, Herman C. Hatfield, II, Ankur D. Jariwala, Gary W. Sams
  • Patent number: 11643703
    Abstract: Apparatus and methods for lithium extraction from aqueous sources are described herein. Divalent ions are removed using staged membrane separation. The aqueous source is subjected to a solvent extraction process that extracts lithium. Aqueous and organic phases of streams produced by the solvent extraction process are separated using electrical and/or gas flotation separation. The solvent is de-complexed to unload lithium. Streams produced by the de-complexing may be subjected to electrical and/or gas flotation separation. Solvent de-complexing can be performed using an electrical separator. Aqueous streams are pH adjusted for return to the environment.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: May 9, 2023
    Assignee: Schlumberger Technology Corporation
    Inventors: Gary W. Sams, Robert Charles William Weston, Ankur D. Jariwala
  • Publication number: 20220055910
    Abstract: A method of recovering lithium from an aqueous source is described. Lithium is extracted from the aqueous source using a sorption/desorption process to form a lithium extract. Impurities are removed from the lithium extract to form a purified lithium extract, and the purified lithium extract is concentrated using a water removal process to form a lithium concentrate. The lithium concentrate is then converted to one or more of lithium carbonate and lithium hydroxide to form a converted stream. Various streams, including some lithium-containing streams, are recycled to the sorption/desorption process.
    Type: Application
    Filed: July 30, 2021
    Publication date: February 24, 2022
    Inventors: Ankur D. Jariwala, Gary W. Sams
  • Patent number: 11255487
    Abstract: A pretreatment system and method for a floating liquid natural gas (“FLNG”) facility are presented. The inlet natural gas stream flows through a membrane system to remove carbon dioxide and a heat exchanger, producing first and second cooled CO2-depleted non-permeate streams. The first cooled CO2-depleted non-permeate stream is routed to additional pretreatment equipment, while the second cooled CO2-depleted non-permeate stream is routed directly to a LNG train. Alternatively, the inlet natural gas stream may flow through a membrane system to produce a single cooled CO2-depleted non-permeate stream that is routed to the LNG train after sweetening and dehydration. Because the pretreatment system delivers the incoming gas stream to the LNG train at a lower temperature than conventional systems, less energy is needed to convert the gas stream to LNG. In addition, the pretreatment system has a smaller footprint than conventional pretreatment systems.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: February 22, 2022
    Assignee: CAMERON INTERNATIONAL CORPORATION
    Inventors: Ankur D. Jariwala, Richard D. Peters
  • Patent number: 11255486
    Abstract: A pretreatment system and method for a floating liquid natural gas (“FLNG”) facility are presented. The inlet natural gas stream flows through a membrane system to remove carbon dioxide and a heat exchanger, producing first and second cooled CO2-depleted non-permeate streams. The first cooled CO2-depleted non-permeate stream is routed to additional pretreatment equipment, while the second cooled CO2-depleted non-permeate stream is routed directly to a LNG train. Alternatively, the inlet natural gas stream may flow through a membrane system to produce a single cooled CO2-depleted non-permeate stream that is routed to the LNG train after sweetening and dehydration. Because the pretreatment system delivers the incoming gas stream to the LNG train at a lower temperature than conventional systems, less energy is needed to convert the gas stream to LNG. In addition, the pretreatment system has a smaller footprint than conventional pretreatment systems.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: February 22, 2022
    Assignee: CAMERON INTERNATIONAL CORPORATION
    Inventors: Ankur D. Jariwala, Richard D. Peters
  • Patent number: 11229917
    Abstract: A separator apparatus is described for separating liquids and solids from a gas. The separator apparatus includes a reverse flow cyclone comprising a cylindrical section, a conical section, and a top, the cylindrical section having a feed inlet, the top having a gas outlet, and the conical section having a reject outlet at the bottom thereof. An axial cyclone is disposed in the cylindrical section, the axial cyclone oriented with a first end located proximate to the top of the apparatus and a second end opposite the first end, the axial cyclone having a tapered entrance fixture at the second end thereof and having a wall with a plurality of openings located between the first end of the axial cyclone and a midpoint of the axial cyclone. A drain plate is coupled to the cylindrical section below the openings of the axial cyclone.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: January 25, 2022
    Assignee: CAMERON INTERNATIONAL CORPORATION
    Inventors: Dag Kvamsdal, Pinkesh R. Sanghani, Ankur D. Jariwala, Luis Eduardo Caires-Fernandez
  • Publication number: 20210246529
    Abstract: Methods and apparatus for integrated alkali metal extraction are disclosed. Various exchange media are used to separate a chosen alkali metal, usually lithium, from a source stream and render the alkali metal into a product. In some cases, absorption/desorption processes, using solid and/or liquid absorption media, are used to purify a brine stream into a concentrate stream having elevated concentration of the desired alkali metal. Various processes, which may include use of liquid absorbents, electrochemical processing, centrifugation, evaporation, electrical mixing and separation, or combinations thereof, are used to separate the chosen metal from the source, and aqueous streams are recycled among the processes to facilitate the various separations.
    Type: Application
    Filed: February 3, 2021
    Publication date: August 12, 2021
    Applicant: Schlumberger Technology Corporation
    Inventors: Ankur D. Jariwala, Gary W. Sams
  • Publication number: 20200399735
    Abstract: Apparatus and methods for lithium extraction from aqueous sources are described herein. Divalent ions are removed using staged membrane separation. The aqueous source is subjected to a solvent extraction process that extracts lithium. Aqueous and organic phases of streams produced by the solvent extraction process are separated using electrical and/or gas flotation separation. The solvent is de-complexed to unload lithium. Streams produced by the de-complexing may be subjected to electrical and/or gas flotation separation. Solvent de-complexing can be performed using an electrical separator. Aqueous streams are pH adjusted for return to the environment.
    Type: Application
    Filed: June 18, 2020
    Publication date: December 24, 2020
    Inventors: Gary W. Sams, Robert Charles William Weston, Ankur D. Jariwala
  • Patent number: 10794167
    Abstract: Embodiments described herein provide methods of operating a linear contactor for absorbing contaminants from a gas stream. The gas stream flows from a first end to a second end of the linear contactor. Fresh absorbent is provided at the first end of the linear contactor based on the theoretical minimum amount of absorbent needed to remove the contaminants. Absorbent is recycled from the second end to the first end of the linear contactor. Fresh absorbent is provided at the second end based on chemical condition of the recycled absorbent. Apparatus for practicing the method is also described.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: October 6, 2020
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Z. Frank Zheng, Dahai Tang, Sandrine Hoebler, Matthew J. Hull, Gary W. Sams, Ankur D. Jariwala
  • Publication number: 20200179866
    Abstract: Embodiments described herein provide methods of removing contaminants from a gas, the methods including providing a feed gas to a vertical contactor; flowing the feed gas in a gas flow direction through the vertical contactor; mixing a fresh absorbent makeup with a recycled absorbent to form an absorbent mixture; providing a fresh absorbent feed to the feed gas; flowing the absorbent mixture through the vertical contactor in a liquid flow direction counter to the gas flow direction; recovering a clean gas stream from the vertical contactor; and recovering the recycled absorbent from the vertical contactor.
    Type: Application
    Filed: December 6, 2018
    Publication date: June 11, 2020
    Inventors: Z. Frank Zheng, Dahai Tang, Sandrine Hoebler, Matthew J. Hull, Gary W. Sams, Ankur D. Jariwala
  • Publication number: 20200173266
    Abstract: Embodiments described herein provide methods of operating a linear contactor for absorbing contaminants from a gas stream. The gas stream flows from a first end to a second end of the linear contactor. Fresh absorbent is provided at the first end of the linear contactor based on the theoretical minimum amount of absorbent needed to remove the contaminants. Absorbent is recycled from the second end to the first end of the linear contactor. Fresh absorbent is provided at the second end based on chemical condition of the recycled absorbent. Apparatus for practicing the method is also described.
    Type: Application
    Filed: December 4, 2018
    Publication date: June 4, 2020
    Inventors: Z. Frank Zheng, Dahai Tang, Sandrine Hoebler, Matthew J. Hull, Gary W. Sams, Ankur D. Jariwala
  • Publication number: 20200001309
    Abstract: A separator apparatus is described for separating liquids and solids from a gas. The separator apparatus includes a reverse flow cyclone comprising a cylindrical section, a conical section, and a top, the cylindrical section having a feed inlet, the top having a gas outlet, and the conical section having a reject outlet at the bottom thereof. An axial cyclone is disposed in the cylindrical section, the axial cyclone oriented with a first end located proximate to the top of the apparatus and a second end opposite the first end, the axial cyclone having a tapered entrance fixture at the second end thereof and having a wall with a plurality of openings located between the first end of the axial cyclone and a midpoint of the axial cyclone. A drain plate is coupled to the cylindrical section below the openings of the axial cyclone.
    Type: Application
    Filed: June 26, 2019
    Publication date: January 2, 2020
    Applicant: Schlumberger Technology Corporation
    Inventors: Dag Kvamsdal, Pinkesh R. Sanghani, Ankur D. Jariwala, Luis Eduardo Caires-Fernandez
  • Publication number: 20190358583
    Abstract: An acid gas purification system is described herein that includes a primary membrane system with a CO2- and H2S-enriched permeate stream effluent and a hydrocarbon stream effluent; a first compression stage arranged to receive the CO2- and H2S-enriched permeate stream and produce a compressed stream; and a cryogenic separation system to receive the compressed stream, the cryogenic separation system including a cooler followed by a fractionator, wherein the fractionator produces a CO2- and H2S liquid stream and a hydrocarbon gas stream.
    Type: Application
    Filed: January 9, 2018
    Publication date: November 28, 2019
    Inventor: Ankur D. Jariwala
  • Publication number: 20190203933
    Abstract: Disclosed herein are systems, apparatuses, and methods for using a sensed combustion zone temperature to continuously control combustion of a first (main) gas within an enclosed combustor. The combustor is in fluid communication with a first gas line carrying the first gas, a second gas line independent of the first gas line carrying a second (assist) gas having a higher heating value than the first gas, and air dampers providing draft or assist air. The first gas may be vapors from a production source or tank. A computer control system monitors the combustion zone temperature of the enclosed combustor as sensed by a sensor in electronic communication with the computer control system and controls the combustion zone temperature by changing a condition of a first gas line valve of the first gas line, a second gas line valve of the second gas line, and the air dampers.
    Type: Application
    Filed: January 4, 2018
    Publication date: July 4, 2019
    Inventors: Rafiqul Khan, Herman C. Hatfield, II, Ankur D. Jariwala, Gary W. Sams
  • Publication number: 20180038555
    Abstract: A pretreatment system and method for a floating liquid natural gas (“FLNG”) facility are presented. The inlet natural gas stream flows through a membrane system to remove carbon dioxide and a heat exchanger, producing first and second cooled CO2-depleted non-permeate streams. The first cooled CO2-depleted non-permeate stream is routed to additional pretreatment equipment, while the second cooled CO2-depleted non-permeate stream is routed directly to a LNG train. Alternatively, the inlet natural gas stream may flow through a membrane system to produce a single cooled CO2-depleted non-permeate stream that is routed to the LNG train after sweetening and dehydration. Because the pretreatment system delivers the incoming gas stream to the LNG train at a lower temperature than conventional systems, less energy is needed to convert the gas stream to LNG. In addition, the pretreatment system has a smaller footprint than conventional pretreatment systems.
    Type: Application
    Filed: October 16, 2017
    Publication date: February 8, 2018
    Inventors: Ankur D. Jariwala, Richard D. Peters
  • Publication number: 20180038554
    Abstract: A pretreatment system and method for a floating liquid natural gas (“FLNG”) facility are presented. The inlet natural gas stream flows through a membrane system to remove carbon dioxide and a heat exchanger, producing first and second cooled CO2-depleted non-permeate streams. The first cooled CO2-depleted non-permeate stream is routed to additional pretreatment equipment, while the second cooled CO2-depleted non-permeate stream is routed directly to a LNG train. Alternatively, the inlet natural gas stream may flow through a membrane system to produce a single cooled CO2-depleted non-permeate stream that is routed to the LNG train after sweetening and dehydration. Because the pretreatment system delivers the incoming gas stream to the LNG train at a lower temperature than conventional systems, less energy is needed to convert the gas stream to LNG. In addition, the pretreatment system has a smaller footprint than conventional pretreatment systems.
    Type: Application
    Filed: October 16, 2017
    Publication date: February 8, 2018
    Inventors: Ankur D. Jariwala, Richard D. Peters
  • Patent number: 9791106
    Abstract: A pretreatment system and method for a floating liquid natural gas (“FLNG”) facility are presented. The inlet natural gas stream flows through a membrane system to remove carbon dioxide and a heat exchanger, producing first and second cooled CO2-depleted non-permeate streams. The first cooled CO2-depleted non-permeate stream is routed to additional pretreatment equipment, while the second cooled CO2-depleted non-permeate stream is routed directly to a LNG train. Alternatively, the inlet natural gas stream may flow through a membrane system to produce a single cooled CO2-depleted non-permeate stream that is routed to the LNG train after sweetening and dehydration. Because the pretreatment system delivers the incoming gas stream to the LNG train at a lower temperature than conventional systems, less energy is needed to convert the gas stream to LNG. In addition, the pretreatment system has a smaller footprint than conventional pretreatment systems.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: October 17, 2017
    Assignee: Cameron International Corporation
    Inventors: Ankur D. Jariwala, Richard D. Peters