Patents by Inventor Ankur Kapoor

Ankur Kapoor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11432879
    Abstract: An apparatus and method for tracking the position and orientation of one or more objects in three dimensional space is disclosed. One or more tracked sensor units are each connected with a respective object. Each tracked sensor unit includes one or more light sources and an inertial measurement unit. One or more position sensitive detector tracking devices track the position of the tracked sensor units. Each position sensitive detector tracking device includes a plurality of position sensitive detector sensors combined with optical lenses that focus light from a larger field of view onto each position sensitive detector sensor. The position and orientation of each object in three-dimensional space is calculated from the output of the inertial measurement unit of the respective tracked sensor unit and the output of the one or more position sensitive detector tracking devices in response to light emitted from the one or more light sources of the respective tracked sensor unit.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: September 6, 2022
    Assignee: Siemens Healthcare GmbH
    Inventors: Ankur Kapoor, Ali Kamen, Gianluca Paladini
  • Patent number: 11382603
    Abstract: A method and system for registering a pre-operative 3D medical image volume of a target organ to intra-operative ultrasound images is disclosed. An intra-operative 3D B-mode ultrasound volume and an intra-operative 3D ultrasound elastography volume are acquired. Patient-specific boundary conditions for a biomechanical tissue model of a target organ are determined using the intra-operative 3D B-mode volume. Patient-specific material properties for the biomechanical tissue model of the target organ are determined using the 3D ultrasound elastography volume. The target organ in the pre-operative 3D medical image volume is deformed using the biomechanical tissue model with the patient-specific material properties with the deformation of the target organ in the pre-operative 3D medical image volume constrained by the patient-specific boundary conditions.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: July 12, 2022
    Assignee: Siemens Healthcare GmbH
    Inventors: Thomas Pheiffer, Ankur Kapoor
  • Publication number: 20220130524
    Abstract: A stream of virtual topograms, in particular live virtual topograms, is predicted. Sets of surface data of an outer surface of a subject are continuously received. Based on each received set of surface data a (live) virtual topogram is continuously generated by a trained machine learning algorithm (MLA). Thereto, a representation of body landmarks is updated based on each received set of surface data by a trained body marker detector (BMD), of the trained MLA, and the (live) virtual topogram is predicted based on the updated spatial marker map and on the corresponding set of surface data by a trained topogram generator (TG) of the trained MLA.
    Type: Application
    Filed: September 30, 2021
    Publication date: April 28, 2022
    Inventors: Brian Teixeira, Vivek Singh, Ankur Kapoor, Yao-jen Chang, Birgi Tamersoy
  • Patent number: 11284850
    Abstract: Systems and methods for a reduced interaction CT scanning workflow. A sensor is used to capture an image of a patient on the table. Scan parameters are automatically set. A full CT scan is performed without a scout scan. During the full CT scan, the scan parameters are adjusted based on the raw CT measurements from the full CT scan. A radiology report is automatically generated from the results of the full CT scan.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: March 29, 2022
    Assignee: Siemens Healthcare GmbH
    Inventors: Vivek Singh, Ankur Kapoor, Philipp Hölzer, Bogdan Georgescu
  • Publication number: 20220015842
    Abstract: A system for holding and controlling medical instruments during procedures includes an end effector configured to hold a medical instrument and a rotational and translational (RT) mechanism configured to rotate and translate the medical instrument along an insertion axis. The system further includes a platform coupled to the RT mechanism and a pair of parallel five-bar planar linkages configured to translate, pitch, and yaw the platform with respect to a principal axis that is parallel to the insertion axis.
    Type: Application
    Filed: October 4, 2021
    Publication date: January 20, 2022
    Inventor: Ankur Kapoor
  • Patent number: 11207035
    Abstract: A framework for sensor-based patient treatment support. In accordance with one aspect, one or more sensors are used to acquire sensor data of one or more objects of interest. The sensor data is then automatically interpreted to generate processing results. One or more actions may be triggered based on the processing results to support treatment of a patient, including supporting medical scanning of the patient.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: December 28, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Eva Eibenberger, Ankur Kapoor, Amitkumar Bhupendrakumar Shah, Vivek Singh, Andreas Wimmer, Philipp Hölzer
  • Publication number: 20210358595
    Abstract: For training a machine learning system for representing a patient body a plurality of stored medical imaging data sets each representing at least a part of a respective patient are obtained. A first one of the plurality of stored medical imaging data sets represents a different part of the patient body than a second one of the plurality of stored medical imaging data sets. A plurality of landmarks in the stored medical imaging data sets are estimated, and each of the stored medical imaging data sets are aligned to a predefined pose using the plurality of landmarks. A plurality of points in the aligned medical imaging data sets are sampled, and the machine learning system is trained based on at least the plurality of points. The learned parameters of the machine learning system are then stored and used in a method for inferring a body representation.
    Type: Application
    Filed: April 15, 2021
    Publication date: November 18, 2021
    Inventors: Birgi Tamersoy, Ankur Kapoor, Vivek Singh, Brian Teixeira
  • Patent number: 11166768
    Abstract: A system for holding and controlling medical instruments during procedures includes an end effector configured to hold a medical instrument and a rotational and translational (RT) mechanism configured to rotate and translate the medical instrument along an insertion axis. The system further includes a platform coupled to the RT mechanism and a pair of parallel five-bar planar linkages configured to translate, pitch, and yaw the platform with respect to a principal axis that is parallel to the insertion axis.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: November 9, 2021
    Assignee: Siemens Healthcare GmbH
    Inventor: Ankur Kapoor
  • Publication number: 20210333298
    Abstract: A method of characterizing a specimen as containing hemolysis, icterus, or lipemia is provided. The method includes capturing one or more images of the specimen, wherein the one or more images include a serum or plasma portion of the specimen. Pixel data is generated by capturing the image. The pixel data of the one or more images of the specimen is processed using a first network executing on a computer to predict a classification of the serum or plasma portion, wherein the classification comprises hemolysis, icterus, and lipemia. The predicted classification is verified using one or more verification networks. Quality check modules and specimen testing apparatus adapted to carry out the method are described, as are other aspects.
    Type: Application
    Filed: September 19, 2019
    Publication date: October 28, 2021
    Applicant: Siemens Healthcare Diagnostics Inc.
    Inventors: Venkatesh NarasimhaMurthy, Vivek Singh, Yao-Jen Chang, Benjamin S. Pollack, Ankur Kapoor
  • Publication number: 20210334972
    Abstract: A method of characterizing a serum or plasma portion of a specimen in a specimen container provides an HILN (hemolysis, icterus, lipemia, normal) determination. Pixel data of an input image of the specimen container is processed by a classification network to identify whether the specimen contains plasma or serum. Specimen Pixel data representing a plasma sample are forwarded to a segmentation/classification/regression network trained with plasma samples for HILN determination. Pixel data representing a serum sample are forwarded to a transformation network, wherein the serum sample pixel data is transformed into pixel data that matches pixel data of a corresponding previously-collected plasma sample by changing sample color, contrast, intensity, and/or brightness. The transformed serum sample pixel data are forwarded to the segmentation/classification/regression network for HILN determination.
    Type: Application
    Filed: September 19, 2019
    Publication date: October 28, 2021
    Applicant: Siemens Healthcare Diagnostics Inc.
    Inventors: Venkatesh NarasimhaMurthy, Vivek Singh, Yao-Jen Chang, Benjamin S. Pollack, Ankur Kapoor
  • Patent number: 11151732
    Abstract: Systems and methods for computing a transformation for correction motion between a first medical image and a second medical image are provided. One or more landmarks are detected in the first medical image and the second medical image. A first tree of the anatomical structure is generated from the first medical image based on the one or more landmarks detected in the first medical image and a second tree of the anatomical structure is generated from the second medical image based on the one or more landmarks detected in the second medical image. The one or more landmarks detected in the first medical image are mapped to the one or more landmarks detected in the second medical image based on the first tree and the second tree. A transformation to align the first medical image and the second medical image is computed based on the mapping.
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: October 19, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Bibo Shi, Luis Carlos Garcia-Peraza Herrera, Ankur Kapoor, Mehmet Akif Gulsun, Tiziano Passerini, Tommaso Mansi
  • Publication number: 20210287368
    Abstract: Patient biographic data may be estimated by receiving patient image data, applying the patient image data to a machine learned model, the machine learned model trained on second patient data and trained to map the second patient data to associated biographic data using machine learned features, generating the patient biographic data based on the applying and the machine learned features, and outputting the patient biographic data. The patient biographic data may include a patient weight, a patient height, a patient gender, and a patient age.
    Type: Application
    Filed: March 10, 2020
    Publication date: September 16, 2021
    Inventors: Ruhan Sa, Birgi Tamersoy, Yao-jen Chang, Klaus Kirchberg, Vivek Singh, Ankur Kapoor, Andreas Wimmer
  • Publication number: 20210282730
    Abstract: Systems and methods for a reduced interaction CT scanning workflow. A sensor is used to capture an image of a patient on the table. Scan parameters are automatically set. A full CT scan is performed without a scout scan. During the full CT scan, the scan parameters are adjusted based on the raw CT measurements from the full CT scan. A radiology report is automatically generated from the results of the full CT scan.
    Type: Application
    Filed: March 13, 2020
    Publication date: September 16, 2021
    Inventors: Vivek Singh, Ankur Kapoor, Philipp Hölzer, Bogdan Georgescu
  • Publication number: 20210251516
    Abstract: For patient model estimation from surface data in a medical system, a stream or sequence of depth camera captures are performed. The fitting of the patient model is divided between different times or parts of the sequence, using the streaming capture to distribute processing and account for patient movement. Less manual involvement may be needed due to the regular availability of image captures. Subsequent fitting may benefit from previous fitting.
    Type: Application
    Filed: February 14, 2020
    Publication date: August 19, 2021
    Inventors: Santosh Pai, Klaus Kirchberg, Vivek Singh, Ruhan Sa, Andreas Wimmer, Ankur Kapoor
  • Publication number: 20210225015
    Abstract: Systems and methods for computing a transformation for correction motion between a first medical image and a second medical image are provided. One or more landmarks are detected in the first medical image and the second medical image. A first tree of the anatomical structure is generated from the first medical image based on the one or more landmarks detected in the first medical image and a second tree of the anatomical structure is generated from the second medical image based on the one or more landmarks detected in the second medical image. The one or more landmarks detected in the first medical image are mapped to the one or more landmarks detected in the second medical image based on the first tree and the second tree. A transformation to align the first medical image and the second medical image is computed based on the mapping.
    Type: Application
    Filed: January 16, 2020
    Publication date: July 22, 2021
    Inventors: Bibo Shi, Luis Carlos Garcia-Peraza Herrera, Ankur Kapoor, Mehmet Akif Gulsun, Tiziano Passerini, Tommaso Mansi
  • Publication number: 20210145412
    Abstract: Systems and method for assisted catheter steering are provided. Instructions for steering a catheter within a patient are received. A graph defining paths between a plurality of configurations of a robotic catheter navigation system is constructed based on the received instructions. Each of the plurality of configurations are associated with a respective view of the patient. A path is determined in the graph to a target configuration of the plurality of configurations of the robotic catheter navigation system. The catheter is automatically steered within the patient based on the determined path in the graph to recover the respective view of the patient associated with the target configuration.
    Type: Application
    Filed: November 13, 2020
    Publication date: May 20, 2021
    Inventors: Tommaso Mansi, Young-Ho Kim, Ankur Kapoor, Jarrod Collins, Rui Liao, Thomas Pheiffer
  • Publication number: 20210145522
    Abstract: A robotic catheter navigation system, and a method for operating the robotic catheter navigation system, are provided. The robotic catheter navigation system comprises a catheter handle, a motor, and a torque transfer disk. The catheter handle comprises a set of gears coupled to a first shaft. The motor is for rotating a second shaft. The torque transfer disk is coupled to the first shaft and the second shaft for transferring the rotation of the second shaft to the first shaft to thereby rotate the set of gears for steering a catheter.
    Type: Application
    Filed: November 13, 2020
    Publication date: May 20, 2021
    Inventors: Christian DeBuys, Young-Ho Kim, Ankur Kapoor, Tommaso Mansi
  • Patent number: 10980509
    Abstract: Methods and systems are provided for registration of preoperative images to ultrasound images. The preoperative images are segmented using a shape model. An ultrasound procedure is performed to acquire the ultrasound images. The path of an ultrasound transducer used in the ultrasound procedure is tracked. The path is used to deform the segmented preoperative images, providing an alignment. The ultrasound images are registered to the preoperative images using the alignment.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: April 20, 2021
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Ankur Kapoor, Thomas Pheiffer, Jin-hyeong Park, Ali Kamen
  • Publication number: 20210093418
    Abstract: A holder facility for holding a medical instrument includes a first receiving element, a second receiving element, and at least three diaphragm elements. The at least three diaphragm elements within a diaphragm layer are arranged between the first and second receiving elements about a common rotation axis. The first and second receiving elements each have an opening for receiving the medical instrument. The first and second receiving elements are movable around about the common rotation axis relative to one another. Each of the at least three diaphragm elements is forcibly moved by mechanical coupling. For a movement of the first receiving element relative to the second receiving element about the common rotation axis, there is a forcibly-guided movement of the at least three diaphragm elements such that the at least three diaphragm elements hold a medical instrument arranged in the opening of the first and second receiving elements.
    Type: Application
    Filed: September 25, 2020
    Publication date: April 1, 2021
    Inventors: Rodolfo Finocchi, Ankur Kapoor, Erin Girard, Young-Ho Kim, Tommaso Mansi
  • Patent number: D935609
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: November 9, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Christian DeBuys, Young-Ho Kim, Ankur Kapoor, Tommaso Mansi