Patents by Inventor ANLIN ZHENG

ANLIN ZHENG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10402680
    Abstract: A method and an apparatus for extracting a saliency map are provided in the embodiment of the present application, the method includes: conducting first convolution processing, first pooling processing and normalization processing on an original image via a prediction model to obtain eye fixation information from the original image, where the eye fixation information is used for indicating a region at which human eye gaze; conducting second convolution processing and second pooling processing on the original image via the prediction model to obtain semantic description information from the original image; fusing the eye fixation information and the semantic description information via element-wise summation function; and conducting detection processing on the fused eye fixation information and semantic description information via the prediction model to obtain a saliency map from the original image. It is used for improving the efficiency of extracting the saliency map from image.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: September 3, 2019
    Assignee: BEIHANG UNIVERSITY
    Inventors: Xiaowu Chen, Anlin Zheng, Jia Li, Qinping Zhao, Feng Lu
  • Patent number: 10275653
    Abstract: Provided is a method and a system for detecting and segmenting primary video objects with neighborhood reversibility, including: dividing each video frame of a video into super pixel blocks; representing each super pixel block with visual features; constructing and training a deep neural network to predict the initial foreground value for each super pixel block in the spatial domain; constructing a neighborhood reversible matrix and transmitting the initial foreground value, constructing an iterative optimization problem and resolving the final foreground value in the temporal spatial domain; performing pixel level transformation on the final foreground value; optimizing the final foreground value for the pixel using morphological smoothing operations; determining whether the pixel belongs to the primary video objects according to the final foreground value.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: April 30, 2019
    Assignee: BEIHANG UNIVERSITY
    Inventors: Jia Li, Xiaowu Chen, Bin Zhou, Qinping Zhao, Changqun Xia, Anlin Zheng, Yu Zhang
  • Publication number: 20180285683
    Abstract: A method and an apparatus for extracting a saliency map are provided in the embodiment of the present application, the method includes: conducting first convolution processing, first pooling processing and normalization processing on an original image via a prediction model to obtain eye fixation information from the original image, where the eye fixation information is used for indicating a region at which human eye gaze; conducting second convolution processing and second pooling processing on the original image via the prediction model to obtain semantic description information from the original image; fusing the eye fixation information and the semantic description information via element-wise summation function; and conducting detection processing on the fused eye fixation information and semantic description information via the prediction model to obtain a saliency map from the original image. It is used for improving the efficiency of extracting the saliency map from image.
    Type: Application
    Filed: August 22, 2017
    Publication date: October 4, 2018
    Inventors: XIAOWU CHEN, ANLIN ZHENG, JIA LI, QINPING ZHAO, FENG LU
  • Publication number: 20180247126
    Abstract: Provided is a method and a system for detecting and segmenting primary video objects with neighborhood reversibility, including: dividing each video frame of a video into super pixel blocks; representing each super pixel block with visual features; constructing and training a deep neural network to predict the initial foreground value for each super pixel block in the spatial domain; constructing a neighborhood reversible matrix and transmitting the initial foreground value, constructing an iterative optimization problem and resolving the final foreground value in the temporal spatial domain; performing pixel level transformation on the final foreground value; optimizing the final foreground value for the pixel using morphological smoothing operations; determining whether the pixel belongs to the primary video objects according to the final foreground value.
    Type: Application
    Filed: September 28, 2017
    Publication date: August 30, 2018
    Inventors: JIA LI, XIAOWU CHEN, BIN ZHOU, QINPING ZHAO, CHANGQUN XIA, ANLIN ZHENG, YU ZHANG