Patents by Inventor Anmol B. Majmudar
Anmol B. Majmudar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240341621Abstract: Respiratory rate can be calculated from an acoustic input signal using time domain and frequency domain techniques. Confidence in the calculated respiratory rate can also be calculated using time domain and frequency domain techniques. Overall respiratory rate and confidence values can be obtained from the time and frequency domain calculations. The overall respiratory rate and confidence values can be output for presentation to a clinician.Type: ApplicationFiled: April 4, 2024Publication date: October 17, 2024Inventors: Ammar Al-Ali, Walter M. Weber, Anmol B. Majmudar, Gilberto Sierra, Sung Uk Lee, Mohamed Diab, Valery G. Telfort, Marc Pelletier, Boris Popov
-
Patent number: 12109012Abstract: A plethysmograph variability processor inputs a plethysmograph waveform having pulses corresponding to pulsatile blood flow within a tissue site. The processor derives plethysmograph values based upon selected plethysmograph features, determines variability values, and calculates a plethysmograph variability parameter. The variability values indicate the variability of the plethysmograph features. The plethysmograph variability parameter is representative of the variability values and provides a useful indication of various physiological conditions and the efficacy of treatment for those conditions.Type: GrantFiled: January 12, 2022Date of Patent: October 8, 2024Assignee: Masimo CorporationInventors: Ammar Al-Ali, Walter M. Weber, Anmol B. Majmudar
-
Patent number: 11974841Abstract: Respiratory rate can be calculated from an acoustic input signal using time domain and frequency domain techniques. Confidence in the calculated respiratory rate can also be calculated using time domain and frequency domain techniques. Overall respiratory rate and confidence values can be obtained from the time and frequency domain calculations. The overall respiratory rate and confidence values can be output for presentation to a clinician.Type: GrantFiled: February 14, 2020Date of Patent: May 7, 2024Assignee: MASIMO CORPORATIONInventors: Ammar Al-Ali, Walter M. Weber, Anmol B. Majmudar, Gilberto Sierra, Sung Uk Lee, Mohamed Diab, Valery G. Telfort, Marc Pelletier, Boris Popov
-
Publication number: 20220240801Abstract: A plethysmograph variability processor inputs a plethysmograph waveform having pulses corresponding to pulsatile blood flow within a tissue site. The processor derives plethysmograph values based upon selected plethysmograph features, determines variability values, and calculates a plethysmograph variability parameter. The variability values indicate the variability of the plethysmograph features. The plethysmograph variability parameter is representative of the variability values and provides a useful indication of various physiological conditions and the efficacy of treatment for those conditions.Type: ApplicationFiled: January 12, 2022Publication date: August 4, 2022Inventors: Ammar Al-Ali, Walter M. Weber, Anmol B. Majmudar
-
Publication number: 20220192529Abstract: A system for determining blood oxygen saturation of a user from a signal responsive to light absorption by tissue of a monitored patient and determine physiological parameters based on the signal. In some examples, the signal may be analyzed in conjunction with motion data, which may include gyroscope and accelerometer data, to determine a pulse rate and/or blood oxygen saturation value.Type: ApplicationFiled: October 13, 2021Publication date: June 23, 2022Inventors: Ammar Al-Ali, Sung Uk Lee, Anmol B. Majmudar, Walter M. Weber
-
Patent number: 11229374Abstract: A plethysmograph variability processor inputs a plethysmograph waveform having pulses corresponding to pulsatile blood flow within a tissue site. The processor derives plethysmograph values based upon selected plethysmograph features, determines variability values, and calculates a plethysmograph variability parameter. The variability values indicate the variability of the plethysmograph features. The plethysmograph variability parameter is representative of the variability values and provides a useful indication of various physiological conditions and the efficacy of treatment for those conditions.Type: GrantFiled: September 10, 2018Date of Patent: January 25, 2022Assignee: Masimo CorporationInventors: Ammar Al-Ali, Walter M. Weber, Anmol B. Majmudar
-
Publication number: 20200253509Abstract: Respiratory rate can be calculated from an acoustic input signal using time domain and frequency domain techniques. Confidence in the calculated respiratory rate can also be calculated using time domain and frequency domain techniques. Overall respiratory rate and confidence values can be obtained from the time and frequency domain calculations. The overall respiratory rate and confidence values can be output for presentation to a clinician.Type: ApplicationFiled: February 14, 2020Publication date: August 13, 2020Inventors: Ammar Al-Ali, Walter M. Weber, Anmol B. Majmudar, Gilberto Sierra, Sung Uk Lee, Mohamed Diab, Valery G. Telfort, Marc Pelletier, Boris Popov
-
Patent number: 10595747Abstract: Respiratory rate can be calculated from an acoustic input signal using time domain and frequency domain techniques. Confidence in the calculated respiratory rate can also be calculated using time domain and frequency domain techniques. Overall respiratory rate and confidence values can be obtained from the time and frequency domain calculations. The overall respiratory rate and confidence values can be output for presentation to a clinician.Type: GrantFiled: August 4, 2017Date of Patent: March 24, 2020Assignee: MASIMO CORPORATIONInventors: Ammar Al-Ali, Walter M. Weber, Anmol B. Majmudar, Gilberto Sierra, Sung Uk Lee, Mohamed Diab, Valery G. Telfort, Marc Pelletier, Boris Popov
-
Publication number: 20190082979Abstract: A plethysmograph variability processor inputs a plethysmograph waveform having pulses corresponding to pulsatile blood flow within a tissue site. The processor derives plethysmograph values based upon selected plethysmograph features, determines variability values, and calculates a plethysmograph variability parameter. The variability values indicate the variability of the plethysmograph features. The plethysmograph variability parameter is representative of the variability values and provides a useful indication of various physiological conditions and the efficacy of treatment for those conditions.Type: ApplicationFiled: September 10, 2018Publication date: March 21, 2019Inventors: Ammar Al-Ali, Walter M. Weber, Anmol B. Majmudar
-
Publication number: 20180014752Abstract: Respiratory rate can be calculated from an acoustic input signal using time domain and frequency domain techniques. Confidence in the calculated respiratory rate can also be calculated using time domain and frequency domain techniques. Overall respiratory rate and confidence values can be obtained from the time and frequency domain calculations. The overall respiratory rate and confidence values can be output for presentation to a clinician.Type: ApplicationFiled: August 4, 2017Publication date: January 18, 2018Inventors: Ammar Al-Ali, Walter M. Weber, Anmol B. Majmudar, Gilberto Sierra, Sung Uk Lee, Mohamed Diab, Valery G. Telfort, Marc Pelletier, Boris Popov
-
Patent number: 9724016Abstract: Respiratory rate can be calculated from an acoustic input signal using time domain and frequency domain techniques. Confidence in the calculated respiratory rate can also be calculated using time domain and frequency domain techniques. Overall respiratory rate and confidence values can be obtained from the time and frequency domain calculations. The overall respiratory rate and confidence values can be output for presentation to a clinician.Type: GrantFiled: October 15, 2010Date of Patent: August 8, 2017Assignee: MASIMO CORP.Inventors: Ammar Al-Ali, Walter M. Weber, Anmol B. Majmudar, Gilberto Sierra, Sung Uk Lee, Mohamed Diab, Valery G. Telfort, Marc Pelletier, Boris Popov
-
Patent number: 9066680Abstract: This disclosure describes, among other features, systems and methods for using multiple physiological parameter inputs to determine multiparameter confidence in respiratory rate measurements. For example, a patient monitoring system can programmatically determine multiparameter confidence in respiratory rate measurements obtained from an acoustic sensor based at least partly on inputs obtained from other non-acoustic sensors or monitors. The patient monitoring system can output a multiparameter confidence indication reflective of the programmatically-determined multiparameter confidence. The multiparameter confidence indication can assist a clinician in determining whether or how to treat a patient based on the patient's respiratory rate.Type: GrantFiled: October 15, 2010Date of Patent: June 30, 2015Assignee: MASIMO CORPORATIONInventors: Ammar Al-Ali, Anmol B. Majmudar, Eric Karl Kinast, Michael O'Reilly