Patents by Inventor Ann Koo

Ann Koo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11923817
    Abstract: Methods of making packaged surface acoustic wave devices are provided. The method may include forming a photosensitive resin coat over a cavity-defining structure encapsulating a surface acoustic wave device. The photosensitive resin coat may be formed using a spin-coating process, and then patterned to form a desired shape. Portions of the photosensitive resin may be removed from areas near the edge of the die, to facilitate separation of a wafer into individual dies. The method may also include forming a conductive structure using a plating process, where the conductive structure is located between the resin coat and the cavity defining structure. The photosensitive resin can include a phenol resin. The packaged surface acoustic wave devices made using a photosensitive resin coat may be relatively thin, and may have a height of less than 220 micrometers.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: March 5, 2024
    Assignee: Skyworks Solutions, Inc.
    Inventors: Li Ann Koo, Takashi Inoue, Vivian Sing Zhi Lee, Ping Yi Tan
  • Patent number: 11894824
    Abstract: Laser-marked packaged surface acoustic wave devices are provided. The laser-marked packaged surface acoustic wave device may include a package structure encapsulating a surface acoustic wave device on a first side of a piezoelectric substrate. The opposite side of the piezoelectric substrate can be directly marked using a laser. The laser may be a deep ultraviolet laser. By directly marking the piezoelectric substrate itself, the use of a separate marking film can be avoided, making the packaged surface acoustic wave device thinner. When the laser has a wavelength readily absorbed by the piezoelectric substrate, a relatively shallow marking may be made in the piezoelectric substrate. The markings can extend less than 1 micrometer into the piezoelectric substrate, so as not to affect the structural integrity of the piezoelectric substrate or the operation of the packaged surface acoustic wave device.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: February 6, 2024
    Assignee: Skyworks Solutions, Inc.
    Inventors: Li Ann Koo, Takashi Inoue, Vivian Sing Zhi Lee, Ping Yi Tan
  • Patent number: 11784622
    Abstract: Methods for making laser-marked packaged surface acoustic wave devices are provided. The method may include directly marking a surface of a piezoelectric substrate, where the opposite surface of the piezoelectric substrate includes a package structure encapsulating a surface acoustic wave device. The method may include exposing the surface of the piezoelectric substrate to light from a deep ultraviolet laser. By using a wavelength readily absorbed by the piezoelectric substrate, a relatively shallow marking may be made in the piezoelectric substrate. The markings may extend less than 1 micrometer into the piezoelectric substrate, and do not affect the structural integrity of the piezoelectric substrate or the operation of the packaged surface acoustic wave device.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: October 10, 2023
    Assignee: Skyworks Solutions, Inc.
    Inventors: Li Ann Koo, Takashi Inoue, Vivian Sing Zhi Lee, Ping Yi Tan
  • Patent number: 11777465
    Abstract: Packaged surface acoustic wave devices are provided. The packaged surface acoustic wave devices are relatively thin and can have a height of less than 220 micrometers. The packaged surface acoustic wave device includes a photosensitive resin over a conductive structure which may be formed by a plating process. The conductive structure may overlie a cavity-defining structure encapsulating a surface acoustic wave device, the cavity-defining structure including walls and a roof. The photosensitive resin can include a phenol resin. The photosensitive resin can be relatively thin. Edge portions of a piezoelectric substrate can be free from the photosensitive resin.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: October 3, 2023
    Assignee: Skyworks Solutions, Inc.
    Inventors: Li Ann Koo, Takashi Inoue, Vivian Sing Zhi Lee, Ping Yi Tan
  • Publication number: 20220006439
    Abstract: Methods of making packaged surface acoustic wave devices are provided. The method may include forming a photosensitive resin coat over a cavity-defining structure encapsulating a surface acoustic wave device. The photosensitive resin coat may be formed using a spin-coating process, and then patterned to form a desired shape. Portions of the photosensitive resin may be removed from areas near the edge of the die, to facilitate separation of a wafer into individual dies. The method may also include forming a conductive structure using a plating process, where the conductive structure is located between the resin coat and the cavity defining structure. The photosensitive resin can include a phenol resin. The packaged surface acoustic wave devices made using a photosensitive resin coat may be relatively thin, and may have a height of less than 220 micrometers.
    Type: Application
    Filed: June 30, 2021
    Publication date: January 6, 2022
    Inventors: Li Ann Koo, Takashi Inoue, Vivian Sing Zhi Lee, Ping Yi Tan
  • Patent number: 11159137
    Abstract: Methods of making packaged surface acoustic wave devices are provided. The method may include forming a photosensitive resin coat over a cavity-defining structure encapsulating a surface acoustic wave device. The photosensitive resin coat may be formed using a spin-coating process, and then patterned to form a desired shape. Portions of the photosensitive resin may be removed from areas near the edge of the die, to facilitate separation of a wafer into individual dies. The method may also include forming a conductive structure using a plating process, where the conductive structure is located between the resin coat and the cavity defining structure. The photosensitive resin can include a phenol resin. The packaged surface acoustic wave devices made using a photosensitive resin coat may be relatively thin, and may have a height of less than 220 micrometers.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: October 26, 2021
    Assignee: SKYWORKS SOLUTIONS, INC.
    Inventors: Li Ann Koo, Takashi Inoue, Vivian Sing Zhi Lee, Ping Yi Tan
  • Publication number: 20200266427
    Abstract: A system and method of forming a silicon-hybrid anode material. The silicon-hybrid anode material including a microparticle mixture of a quantity of silicon microparticles and a quantity of metal microparticles intermixed with the quantity of silicon microparticles in a selected ratio. The microparticle mixture is formed in a silicon-hybrid anode material layer having a thickness of between about 2 and about 15 ?m.
    Type: Application
    Filed: March 16, 2020
    Publication date: August 20, 2020
    Inventors: Wenming Li, Byunghoon Yoon, Ann Koo
  • Patent number: 10593934
    Abstract: A system and method of forming a silicon-hybrid anode material. The silicon-hybrid anode material including a microparticle mixture of a quantity of silicon microparticles and a quantity of metal microparticles intermixed with the quantity of silicon microparticles in a selected ratio. The microparticle mixture is formed in a silicon-hybrid anode material layer having a thickness of between about 2 and about 15 ?m.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: March 17, 2020
    Assignee: APPLEJACK 199 L.P.
    Inventors: Wenming Li, Byunghoon Yoon, Ann Koo
  • Publication number: 20200076398
    Abstract: Laser-marked packaged surface acoustic wave devices are provided. The laser-marked packaged surface acoustic wave device may include a package structure encapsulating a surface acoustic wave device on a first side of a piezoelectric substrate. The opposite side of the piezoelectric substrate can be directly marked using a laser. The laser may be a deep ultraviolet laser. By directly marking the piezoelectric substrate itself, the use of a separate marking film can be avoided, making the packaged surface acoustic wave device thinner. When the laser has a wavelength readily absorbed by the piezoelectric substrate, a relatively shallow marking may be made in the piezoelectric substrate. The markings can extend less than 1 micrometer into the piezoelectric substrate, so as not to affect the structural integrity of the piezoelectric substrate or the operation of the packaged surface acoustic wave device.
    Type: Application
    Filed: August 29, 2019
    Publication date: March 5, 2020
    Inventors: Li Ann Koo, Takashi Inoue, Vivian Sing Zhi Lee, Ping Yi Tan
  • Publication number: 20200076399
    Abstract: Methods for making laser-marked packaged surface acoustic wave devices are provided. The method may include directly marking a surface of a piezoelectric substrate, where the opposite surface of the piezoelectric substrate includes a package structure encapsulating a surface acoustic wave device. The method may include exposing the surface of the piezoelectric substrate to light from a deep ultraviolet laser. By using a wavelength readily absorbed by the piezoelectric substrate, a relatively shallow marking may be made in the piezoelectric substrate. The markings may extend less than 1 micrometer into the piezoelectric substrate, and do not affect the structural integrity of the piezoelectric substrate or the operation of the packaged surface acoustic wave device.
    Type: Application
    Filed: August 29, 2019
    Publication date: March 5, 2020
    Inventors: Li Ann Koo, Takashi Inoue, Vivian Sing Zhi Lee, Ping Yi Tan
  • Publication number: 20200076402
    Abstract: Methods of making packaged surface acoustic wave devices are provided. The method may include forming a photosensitive resin coat over a cavity-defining structure encapsulating a surface acoustic wave device. The photosensitive resin coat may be formed using a spin-coating process, and then patterned to form a desired shape. Portions of the photosensitive resin may be removed from areas near the edge of the die, to facilitate separation of a wafer into individual dies. The method may also include forming a conductive structure using a plating process, where the conductive structure is located between the resin coat and the cavity defining structure. The photosensitive resin can include a phenol resin. The packaged surface acoustic wave devices made using a photosensitive resin coat may be relatively thin, and may have a height of less than 220 micrometers.
    Type: Application
    Filed: August 29, 2019
    Publication date: March 5, 2020
    Inventors: Li Ann Koo, Takashi Inoue, Vivian Sing Zhi Lee, Ping Yi Tan
  • Publication number: 20200076400
    Abstract: Packaged surface acoustic wave devices are provided. The packaged surface acoustic wave devices are relatively thin and can have a height of less than 220 micrometers. The packaged surface acoustic wave device includes a photosensitive resin over a conductive structure which may be formed by a plating process. The conductive structure may overlie a cavity-defining structure encapsulating a surface acoustic wave device, the cavity-defining structure including walls and a roof. The photosensitive resin can include a phenol resin. The photosensitive resin can be relatively thin. Edge portions of a piezoelectric substrate can be free from the photosensitive resin.
    Type: Application
    Filed: August 29, 2019
    Publication date: March 5, 2020
    Inventors: Li Ann Koo, Takashi Inoue, Vivian Sing Zhi Lee, Ping Yi Tan
  • Patent number: 10535868
    Abstract: A system and method of forming a thin film battery includes a substrate, a first current collector formed on the substrate, a cathode layer formed on a portion of the first current collector, a solid layer of electrolyte material formed on the cathode layer, a silicon-metal thin film anode layer formed on the solid layer of electrolyte material and a second current collector electrically coupled to the silicon-metal thin film anode layer. A method and a system for forming the thin film battery are also disclosed.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: January 14, 2020
    Assignee: APPLEJACK 199 L.P.
    Inventors: Wenming Li, Byunghoon Yoon, Ann Koo
  • Patent number: 9914018
    Abstract: A system, method and apparatus for training a swing movement of a club includes storing a desired swing data in a measuring device, capturing a training swing data in the measuring device, comparing the training swing data to the desired swing data to determine a set of differential data, outputting a signal to a user corresponding to the set of differential data.
    Type: Grant
    Filed: September 16, 2015
    Date of Patent: March 13, 2018
    Inventors: Uwe Richter, Xiping Huo, Ann Koo, Nikolai Maltsev, Louis Lau, John Groot
  • Patent number: 9748569
    Abstract: A porous thin film battery is described herein. The battery includes a substrate, a porous thin film cathode formed on the substrate, an electrolyte layer formed on the porous thin film cathode and a porous thin film anode formed on the electrolyte layer. The porous thin film cathode includes a first set of pores initially filled with a quantity of a first polymer material and then the first polymer material is removed to form the first set of pores. The porous thin film anode includes a second set of pores initially filled with a third polymer material and then the third polymer material is removed to form the second set of pores. A method of forming the porous thin film battery is also described. A system for forming the porous thin film battery is also described.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: August 29, 2017
    Assignee: APPLEJACK 199 L.P.
    Inventors: Wenming Li, Byunghoon Yoon, Ann Koo
  • Publication number: 20170194639
    Abstract: A system and method of forming a silicon-hybrid anode material. The silicon-hybrid anode material including a microparticle mixture of a quantity of silicon microparticles and a quantity of metal microparticles intermixed with the quantity of silicon microparticles in a selected ratio. The microparticle mixture is formed in a silicon-hybrid anode material layer having a thickness of between about 2 and about 15?m.
    Type: Application
    Filed: March 20, 2017
    Publication date: July 6, 2017
    Inventors: Wenming Li, Byunghoon Yoon, Ann Koo
  • Publication number: 20170040595
    Abstract: A system and method of forming a thin film battery includes a substrate, a first current collector formed on the substrate, a cathode layer formed on a portion of the first current collector, a solid layer of electrolyte material formed on the cathode layer, a silicon-metal thin film anode layer formed on the solid layer of electrolyte material and a second current collector electrically coupled to the silicon-metal thin film anode layer. A method and a system for forming the thin film battery are also disclosed.
    Type: Application
    Filed: October 24, 2016
    Publication date: February 9, 2017
    Applicant: APPLEJACK 199 L.P.
    Inventors: Wenming LI, Byunghoon YOON, Ann KOO
  • Patent number: 9478797
    Abstract: A system and method of forming a thin film battery includes a substrate, a first current collector formed on the substrate, a cathode layer formed on a portion of the first current collector, a solid layer of electrolyte material formed on the cathode layer, a silicon-metal thin film anode layer formed on the solid layer of electrolyte material and a second current collector electrically coupled to the silicon-metal thin film anode layer. A method and a system for forming the thin film battery are also disclosed.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: October 25, 2016
    Assignee: APPLEJACK 199 L.P.
    Inventors: Wenming Li, Byunghoon Yoon, Ann Koo
  • Patent number: 9457229
    Abstract: A method of providing a sensor-based gaming system for an avatar to represent a player in a virtual environment includes wirelessly receiving a set of measurements describing attributes of the player. The method includes generating a player profile associated with the player and including an avatar depicting a virtual embodiment of the player in a virtual world. The method includes receiving sensor data from sensors. The sensor data describes a change in a real world position of the player. The method includes determining an estimate of a player movement. The method includes determining a difference between a screen position of the avatar in the virtual world and the real world position of the player in the real world. The method includes generating avatar image data representative of movement of the avatar corresponding to movement of the player.
    Type: Grant
    Filed: April 2, 2014
    Date of Patent: October 4, 2016
    Inventors: Jun Liang, Ann Koo, Nicolai Maltsev
  • Publication number: 20160104888
    Abstract: A porous thin film battery is described herein. The battery includes a substrate, a porous thin film cathode formed on the substrate, an electrolyte layer formed on the porous thin film cathode and a porous thin film anode formed on the electrolyte layer. The porous thin film cathode includes a first set of pores initially filled with a quantity of a first polymer material and then the first polymer material is removed to form the first set of pores. The porous thin film anode includes a second set of pores initially filled with a third polymer material and then the third polymer material is removed to form the second set of pores. A method of forming the porous thin film battery is also described. A system for forming the porous thin film battery is also described.
    Type: Application
    Filed: September 4, 2013
    Publication date: April 14, 2016
    Applicant: Applejack 199 L,P., a California limited partnershi
    Inventors: Wenming Li, Byunghoon Yoon, Ann Koo