Patents by Inventor Ann Prewett

Ann Prewett has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9814496
    Abstract: A swellable, resilient self-retaining interspinous implant that includes two oppositely disposed retaining members connected by a centrally disposed cross body, the cross body defining a center axis, each retaining member extending in opposite directions relative to each other and perpendicular to the center axis, the implant being dimensioned and configured to fit between two spinous processes of two adjacent vertebrae. In embodiments, the implant has a first configuration of reduced size such that it can be inserted into the patient in a minimally invasive manner. Once inserted to an application point within the patient, the implant expands in size to dynamically maintain the adjacent spinous processes in beneficial alignment. Also provided is a method of making a swellable, resilient interspinous implant as described herein.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: November 14, 2017
    Inventor: Ann Prewett
  • Publication number: 20170071638
    Abstract: A swellable, resilient self-retaining interspinous implant that includes two oppositely disposed retaining members connected by a centrally disposed cross body, the cross body defining a center axis, each retaining member extending in opposite directions relative to each other and perpendicular to the center axis, the implant being dimensioned and configured to fit between two spinous processes of two adjacent vertebrae. In embodiments, the implant has a first configuration of reduced size such that it can be inserted into the patient in a minimally invasive manner. Once inserted to an application point within the patient, the implant expands in size to dynamically maintain the adjacent spinous processes in beneficial alignment. Also provided is a method of making a swellable, resilient interspinous implant as described herein.
    Type: Application
    Filed: September 15, 2015
    Publication date: March 16, 2017
    Inventor: Ann PREWETT
  • Patent number: 9131965
    Abstract: A swellable, resilient interspinous implant is provided that includes a swellable polymeric medium, said polymeric medium being dispersed throughout the implant, the implant being dimensioned and configured to fit between two spinous processes of two adjacent vertebrae and buttress the space between the two adjacent vertebrae. In embodiments, the implant has a first configuration of reduced size such that it can be inserted into the patient in a minimally invasive manner. Once inserted to an application point within the patient, the implant expands in size to dynamically maintain the adjacent spinous processes in beneficial alignment. Also provided is a method of making a swellable, resilient interspinous implant as described herein. Also provided is a method of treating a degenerative condition of a spine which includes creating an incision and inserting, through the incision, between two spinous processes of two adjacent vertebrae, a swellable, resilient interspinous implant as described herein.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: September 15, 2015
    Assignees: REPLICATION MEDICAL INC., HYDRA MEDICAL LLC
    Inventors: Ann Prewett, Alan Chen, Frederick H. Hardenbrook
  • Publication number: 20130282121
    Abstract: A spinal facet joint implant suitable for minimally invasive implantation and capable of transitioning from a compact first configuration to an expanded second configuration is made of a swellable and compressible fluid absorbing polymer. The implant is dimensioned and configured, while in the first configuration, to fit within the lumen of a surgical needle. In the expanded, second configuration, the implant exerts pressure within the facet joint which helps keep the facet joint from collapsing and anchors the implant in place. A spinal facet joint implant herein may also be dimensioned and configured to occupy a portion of the capsule of a facet joint. A spinal facet joint implant for treating inflammation made from a fluid absorbing polymer absorbs and sequesters inflammatory agents as it absorbs synovial fluid in situ. Methods of making and implanting a spinal facet implant are provided.
    Type: Application
    Filed: March 22, 2013
    Publication date: October 24, 2013
    Inventor: Ann Prewett
  • Publication number: 20100331987
    Abstract: A radially compressed xerogel spinal nucleus implant is manufactured and utilized for implantation into an intervertebral disc space. The implant has an optimized cross-sectional ellipsoid configuration which facilitates insertion of the implant through a minimal incision in the annulus. Radial compression is achieved by exerting substantially equilateral circumferential compression on an object contained within a radially collapsible member for exerting substantially equilateral circumferential compression on the object. Radial compression may also be achieved by exerting substantially equilateral circumferential compression force on a spinal nucleus implant via gas pressure in a sealed chamber.
    Type: Application
    Filed: September 2, 2010
    Publication date: December 30, 2010
    Applicant: REPLICATION MEDICAL INC.
    Inventors: Gerald Gontarz, Ann Prewett
  • Patent number: 7806934
    Abstract: A radially compressed xerogel spinal nucleus implant is manufactured and utilized for implantation into an intervertebral disc space. The implant has an optimized cross-sectional ellipsoid configuration which facilitates insertion of the implant through a minimal incision in the annulus. Radial compression is achieved by exerting substantially equilateral circumferential compression on an object contained within a radially collapsible member for exerting substantially equilateral circumferential compression on the object. Radial compression may also be achieved by exerting substantially equilateral circumferential compression force on a spinal nucleus implant via gas pressure in a sealed chamber.
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: October 5, 2010
    Assignee: Replication Medical Inc.
    Inventors: Gerald Gontarz, Ann Prewett
  • Publication number: 20100222881
    Abstract: The present disclosure relates to a vessel/tissue protection device having a polymer coated reinforcing layer. The polymer can comprise a biocompatible polymer that will not promote tissue in-growth or attachment, such as segmented polyurethane, polycarbonate urethane, polyether urethane, polyacrylonitrile, etc. The reinforcing layer can comprise any suitable woven, non-woven, knitted, or braided reinforcing polymer, fabric, or foil that is biocompatible and capable of holding a suture, staple, or other attachment device.
    Type: Application
    Filed: October 5, 2009
    Publication date: September 2, 2010
    Inventors: Ann Prewett, Mark Dingledine, Alan C. Chen
  • Publication number: 20100100183
    Abstract: A swellable, resilient interspinous implant is provided that includes a swellable polymeric medium, said polymeric medium being dispersed throughout the implant, the implant being dimensioned and configured to fit between two spinous processes of two adjacent vertebrae and buttress the space between the two adjacent vertebrae. In embodiments, the implant has a first configuration of reduced size such that it can be inserted into the patient in a minimally invasive manner. Once inserted to an application point within the patient, the implant expands in size to dynamically maintain the adjacent spinous processes in beneficial alignment. Also provided is a method of making a swellable, resilient interspinous implant as described herein. Also provided is a method of treating a degenerative condition of a spine which includes creating an incision and inserting, through the incision, between two spinous processes of two adjacent vertebrae, a swellable, resilient interspinous implant as described herein.
    Type: Application
    Filed: October 15, 2009
    Publication date: April 22, 2010
    Inventors: Ann Prewett, Alan Chen, Frederick H. Hardenbrook
  • Publication number: 20090149958
    Abstract: A spinal nucleus implant is provided which includes a braided three-dimensional reinforcement member having a polymeric matrix imbued therein, the implant configured to have a shape consistent with a cavity within an intervertebral disc space. The polymeric matrix may be a fluid absorbing polymer, e.g., a hydrogel or a substantially non-fluid absorbing in-situ curable elastic polymer. A method of making a spinal nucleus implant is provided which includes providing a braided three-dimensional reinforcement member configured and dimensioned to have a shape consistent with a cavity in an intervertebral space and infusing the braided three-dimensional reinforcement member with a liquid polymer capable of forming a polymeric matrix. Also provided is a spinal nucleus implant including a three-dimensional reinforcement member adapted and configured to undergo anisotropic expansion, the implant configured to have a shape consistent with a cavity within an intervertebral disc space.
    Type: Application
    Filed: November 3, 2008
    Publication date: June 11, 2009
    Inventors: Ann Prewett, Gerald Gontarz
  • Publication number: 20070191956
    Abstract: A spinal nucleus implant is provided which includes an implant body and an interiorly embedded support member which extends out from the implant body. In one embodiment, the support member is fabric selected from the group consisting of mesh, woven fabric and nonwoven fabric. In one embodiment, the support member includes at least one portion which is located outside of the body, said portion adapted to engage one or more guides for orienting the implant. In one embodiment, the implant is capable of expanding from a compact, substantially dehydrated configuration to an expanded hydrated configuration. A method of manufacturing a spinal nucleus implant is provided which includes coagulating a liquid polymer such that at least a portion of said support member extends beyond the perimeter of the polymer to form a spinal nucleus implant having an interiorly disposed support member which extends out of the polymer. A method of implanting such a spinal nucleus implant is provided.
    Type: Application
    Filed: January 24, 2007
    Publication date: August 16, 2007
    Inventors: Ann Prewett, Gerald Gontarz
  • Publication number: 20060136065
    Abstract: A radially compressed xerogel spinal nucleus implant is manufactured and utilized for implantation into an intervertebral disc space. The implant has an optimized cross-sectional ellipsoid configuration which facilitates insertion of the implant through a minimal incision in the annulus. Radial compression is achieved by exerting substantially equilateral circumferential compression on an object contained within a radially collapsible member for exerting substantially equilateral circumferential compression on the object. Radial compression may also be achieved by exerting substantially equilateral circumferential compression force on a spinal nucleus implant via gas pressure in a sealed chamber.
    Type: Application
    Filed: December 16, 2005
    Publication date: June 22, 2006
    Inventors: Gerald Gontarz, Ann Prewett
  • Patent number: 5118512
    Abstract: A process for cryopreserving a biological material which comprises contacting the biological material with both an effective amount at least one cryopreservation agent, and an agent to increase diffusion of the cryopreservation agent into the biological material, such as a surfactant or a permeation enhancer.
    Type: Grant
    Filed: January 23, 1990
    Date of Patent: June 2, 1992
    Assignee: Osteotech, Inc. (a Delaware Corp.)
    Inventors: Robert K. O'Leary, Ann Prewett