Patents by Inventor Anna Harley-Trochimczyk

Anna Harley-Trochimczyk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230190151
    Abstract: Various examples are directed to systems and methods that may utilize an analyte sensor system comprising a sensor enclosure; an analyte sensor extending from the sensor enclosure; and sensor electronics positioned within the sensor enclosure. The sensor electronics may be configured to detect that a wireless signal has changed from a first state to a second state, where the wireless signal may be provided through the sensor enclosure. After detecting that the wireless signal has changed from the first state to the second state, the sensor electronics may monitor whether the wireless signal remains in the second state for at least a stability threshold time period. The sensor electronics may execute a responsive action in the sensor system based at least in part on whether the wireless signal remains in the second state for at least the stability threshold time period.
    Type: Application
    Filed: December 16, 2022
    Publication date: June 22, 2023
    Inventors: James S. Amidei, Stefan M. Robert, Anna Harley-Trochimczyk, Thomas George O'Connell, Anderson Ionut Micu
  • Publication number: 20230148920
    Abstract: This document discusses, among other things, systems and methods to compensate for the effects of temperature on sensors, such as analyte sensor. An example method may include determining a temperature-compensated glucose concentration level by receiving a temperature signal indicative of a temperature parameter of an external component, receiving a glucose signal indicative of an in vivo glucose concentration level, and determining a compensated glucose concentration level based on the glucose signal, the temperature signal, and a delay parameter.
    Type: Application
    Filed: October 6, 2022
    Publication date: May 18, 2023
    Inventors: Anna Harley-Trochimczyk, Sebastian Bohm, Rui Ma, Disha Sheth, Minglian Shi, Kamuran Turksoy
  • Publication number: 20230108235
    Abstract: This document discusses, among other things, systems and methods to compensate for the effects of temperature on sensors, such as analyte sensor. An example method may include determining a temperature-compensated glucose concentration level by receiving a temperature signal indicative of a temperature parameter of an external component, receiving a glucose signal indicative of an in vivo glucose concentration level, and determining a compensated glucose concentration level based on the glucose signal, the temperature signal, and a delay parameter.
    Type: Application
    Filed: October 6, 2022
    Publication date: April 6, 2023
    Inventors: Anna Harley-Trochimczyk, Sebastian Bohm, Rui Ma, Disha Sheth, Minglian Shi, Kamuran Turksoy
  • Publication number: 20220095968
    Abstract: Various examples are directed to systems and methods for generating an estimated analyte value. An analyte sensor system may access a first sensor signal from an in vivo analyte sensor and a first temperature signal from the ex vivo temperature sensor. The analyte sensor system may generate a first analyte sensor temperature based at least in part on the first temperature signal and generate a first estimated analyte value based at least in part on the first sensor signal and the first temperature-compensated sensitivity.
    Type: Application
    Filed: December 8, 2021
    Publication date: March 31, 2022
    Inventors: Liang Wang, Shwetha Edla, Ghazaleh R. Esmaili, Hossein Mohammadiarani, Sebastian Bohm, Rui Ma, Minglian Shi, Anna Harley-Trochimczyk
  • Patent number: 10845325
    Abstract: A solid-state, low power microheater sensor platform that is configurable with selected metal oxide films for particular gas sensing applications is described. The sensor platform is configured by selecting a chemiresistive or catalytic material that is suitable for detecting a desired gas and then forming a porous nanostructured film on the designated surfaces of the microheater platform. Also described are methods for creating a highly porous, nanostructured metal oxide film in a controlled location from a liquid precursor using a localized heat source. By fast annealing deposited liquid precursors with the microheater, a highly porous, nanocrystalline metal oxide film can be generated in-situ and locally on the sensor platform.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: November 24, 2020
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Roya Maboudian, Hu Long, Anna Harley-Trochimczyk, William Mickelson, Carlo Carraro
  • Publication number: 20190041352
    Abstract: A solid-state, low power microheater sensor platform that is configurable with selected metal oxide films for particular gas sensing applications is described. The sensor platform is configured by selecting a chemiresistive or catalytic material that is suitable for detecting a desired gas and then forming a porous nanostructured film on the designated surfaces of the microheater platform. Also described are methods for creating a highly porous, nanostructured metal oxide film in a controlled location from a liquid precursor using a localized heat source. By fast annealing deposited liquid precursors with the microheater, a highly porous, nanocrystalline metal oxide film can be generated in-situ and locally on the sensor platform.
    Type: Application
    Filed: July 25, 2018
    Publication date: February 7, 2019
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Roya Maboudian, Hu Long, Anna Harley-Trochimczyk, William Mickelson, Carlo Carraro