Patents by Inventor Anna Lee Tonkovich

Anna Lee Tonkovich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7220390
    Abstract: This invention relates to an apparatus, comprising: at least one process microchannel having a height, width and length, the height being up to about 10 mm, the process microchannel having a base wall extending in one direction along the width of the process microchannel and in another direction along the length of the process microchannel; at least one fin projecting into the process microchannel from the base wall and extending along at least part of the length of the process microchannel; and a catalyst or sorption medium supported by the fin.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: May 22, 2007
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Dongming Qiu, Richard Q. Long, Barry L. Yang, Thomas Yuschak, Steven T. Perry
  • Patent number: 7084180
    Abstract: The disclosed invention relates to a process for converting a reactant composition comprising H2 and CO to a product comprising at least one aliphatic hydrocarbon having at least about 5 carbon atoms, the process comprising: flowing the reactant composition through a microchannel reactor in contact with a Fischer-Tropsch catalyst to convert the reactant composition to the product, the microchannel reactor comprising a plurality of process microchannels containing the catalyst; transferring heat from the process microchannels to a heat exchanger; and removing the product from the microchannel reactor; the process producing at least about 0.5 gram of aliphatic hydrocarbon having at least about 5 carbon atoms per gram of catalyst per hour; the selectivity to methane in the product being less than about 25%. The disclosed invention also relates to a supported catalyst comprising Co, and a microchannel reactor comprising at least one process microchannel and at least one adjacent heat exchange zone.
    Type: Grant
    Filed: January 28, 2004
    Date of Patent: August 1, 2006
    Assignee: Velocys, Inc.
    Inventors: Yong Wang, Anna Lee Tonkovich, Terry Mazanec, Francis P. Daly, Dave VanderWiel, Jianli Hu, Chunshe Cao, Charles Kibby, Xiaohong Shari Li, Michael D. Briscoe, Nathan Gano, Ya-Huei Chin
  • Publication number: 20060147370
    Abstract: The invention is a process and device for exchanging heat energy between three or more streams in a microchannel heat exchanger which can be integrated with a microchannel reactor to form an integrated microchannel processing unit. The invention enables the combining of a plurality of integrated microchannel devices to provide the benefits of large-scale operation. In particular, the microchannel heat exchanger of the present invention enables flexible heat transfer between multiple streams and total heat transfer rates of about 1 Watt or more per core unit volume expressed as W/cc.
    Type: Application
    Filed: December 15, 2005
    Publication date: July 6, 2006
    Applicant: Battelle Memorial Institute
    Inventors: James Mathias, G. Chadwell, Dongming Qiu, Anna Lee Tonkovich, Steven Perry, Matthew Schmidt, Sean Fitzgerald, David Hesse, Thomas Yuschak, Bin Yang
  • Patent number: 7029647
    Abstract: This invention relates to a process for making hydrogen peroxide in a microchannel reactor. The process comprises flowing a process feed stream and a staged addition feed stream in a process microchannel in contact with each other to form a reactant mixture comprising O2 and H2, and contacting a catalyst with the reactant mixture in the process microchannel to convert the reactant mixture to a product comprising hydrogen peroxide; transferring heat from the process microchannel to a heat exchanger; and removing the product from the process microchannel.
    Type: Grant
    Filed: January 27, 2004
    Date of Patent: April 18, 2006
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Kai Tod Paul Jarosch, David John Hesse
  • Publication number: 20060073967
    Abstract: The present invention includes Fischer-Tropsch catalysts, reactions using Fischer-Tropsch catalysts, methods of making Fischer-Tropsch catalysts, processes of hydrogenating carbon monoxide, and fuels made using these processes. The invention provides the ability to hydrogenate carbon monoxide with low contact times, good conversion rates and low methane selectivities. In a preferred method, the catalyst is made using a metal foam support.
    Type: Application
    Filed: September 20, 2005
    Publication date: April 6, 2006
    Inventors: Yong Wang, David Vanderwiel, Anna Lee Tonkovich, Yufei Gao, Eddie Baker
  • Patent number: 7000427
    Abstract: This invention relates to a process for cooling or liquefying a fluid product (e.g., natural gas) in a heat exchanger, the process comprising: flowing a fluid refrigerant through a set of refrigerant microchannels in the heat exchanger; and flowing the product through a set of product microchannels in the heat exchanger, the product flowing through the product microchannels exchanging heat with the refrigerant flowing through the refrigerant microchannels, the product exiting the set of product microchannels being cooler than the product entering the set of product microchannels. The process has a wide range of applications, including liquefying natural gas.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: February 21, 2006
    Assignee: Velocys, Inc.
    Inventors: James A. Mathias, Ravi Arora, Wayne W. Simmons, Jeffrey S. McDaniel, Anna Lee Tonkovich, William A. Krause, Laura J. Silva, Dongming Qiu
  • Patent number: 6989134
    Abstract: Novel methods of making laminated, microchannel devices are described. Examples include: assembly from thin strips rather than sheets; and hot isostatic pressing (HIPing) to form devices with a hermetically sealed wall. Laminated microchannel articles having novel features are also described. The invention includes processes conducted using any of the articles described.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: January 24, 2006
    Assignee: Velocys Inc.
    Inventors: Anna Lee Tonkovich, Gary Roberts, Sean P. Fitzgerald, Timothy M. Werner, Matthew B. Schmidt, Robert J. Luzenski, G. Bradley Chadwell, James A. Mathias, Abhishek Gupta, David J. Kuhlmann, Thomas D. Yuschak
  • Publication number: 20050265915
    Abstract: The present invention includes methods and apparatuses that utilize microchannel technology and, more specifically in exemplary form, producing hydrogen peroxide using microchannel technology. An exemplary process for producing hydrogen peroxide comprises flowing feed streams into intimate fluid communication with one another within a process microchannel to form a reactant mixture stream comprising a hydrogen source and an oxygen source such as, without limitation, hydrogen gas and oxygen gas. Thereafter, a catalyst is contacted by the reactant mixture and is operative to convert a majority of the reactant mixture to hydrogen peroxide that is withdrawn via an egressing product stream. During the hydrogen peroxide chemical reaction, exothermic energy is generated. This exothermic energy is absorbed by the fluid within the microchannel as well as the microchannel itself.
    Type: Application
    Filed: April 27, 2005
    Publication date: December 1, 2005
    Inventors: Anna Lee Tonkovich, Bin Yang, William Rogers, Paul Neagle, Sean Fitzgerald, Kai Tod Jarosch, Dongming Qiu, David Hesse, Micheal Lamont
  • Patent number: 6969506
    Abstract: Integrated Combustion Reactors (ICRs) and methods of making ICRs are described in which combustion chambers (or channels) are in direct thermal contact to reaction chambers for an endothermic reaction. Superior results were achieved for combustion chambers which contained a gap for free flow through the chamber. Particular reactor designs are also described. Processes of conducting reactions in integrated combustion reactors are described and results presented. Some of these processes are characterized by unexpected and superior results.
    Type: Grant
    Filed: February 14, 2002
    Date of Patent: November 29, 2005
    Assignee: Battelle Memorial Institute
    Inventors: Anna Lee Tonkovich, Gary L. Roberts, Steven T. Perry, Sean P. Fitzgerald
  • Patent number: 6969505
    Abstract: This invention relates to a process for conducting an equilibrium limited chemical reaction in a single stage process channel. A process for conducting a water shift reaction is disclosed. A multichannel reactor with cross flow heat exchange is disclosed.
    Type: Grant
    Filed: August 15, 2002
    Date of Patent: November 29, 2005
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Wayne W. Simmons, Kai Tod Paul Jarosch, Terry Mazanec, Eric Daymo, Ying Peng, Jennifer Lynne Marco
  • Publication number: 20050045030
    Abstract: The disclosed invention relates to a process for separating methane or nitrogen from a fluid mixture comprising methane and nitrogen, the process comprising: (A) flowing the fluid mixture into a microchannel separator, the microchannel separator comprising a plurality of process microchannels containing a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the methane or nitrogen is sorbed by the sorption medium, and removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing the methane or nitrogen from the sorption medium and removing the desorbed methane or nitrogen from the microchannel separator. The process is suitable for upgrading methane from coal mines, landfills, and other sub-quality sources.
    Type: Application
    Filed: August 26, 2004
    Publication date: March 3, 2005
    Inventors: Anna-Lee Tonkovich, Dongming Oiu, Terence Dritz, Paul Neagle, Robert Litt, Ravi Arora, Michael Lamont, Kristina Pagnotto
  • Publication number: 20040265225
    Abstract: The present invention provides catalysts, reactors, and methods of steam reforming over a catalyst. Surprisingly superior results and properties obtained in methods and catalysts of the present invention are also described. For example, a coated catalyst was demonstrated to be highly stable under steam reforming conditions (high temperature and high pressure of steam). Methods of making steam reforming catalysts are also described.
    Type: Application
    Filed: February 13, 2004
    Publication date: December 30, 2004
    Inventors: Junko M. Watson, Francis P. Daly, Yong Wang, Anna Lee Tonkovich, Sean P. Fitzgerald, Steven T. Perry, Laura J. Silva, Rachid Taha, Enrique Aceves de Alba, Ya-Huei Chin, Robert Rozmiarek, XiaoHong Li
  • Publication number: 20040266615
    Abstract: The present invention provides a Mg-stabilized alumina catalyst support and a catalyst comprising Rh on a Mg-stabilized alumina support. The catalyst is characterized by surprisingly superior results in catalyzing methane steam reforming.
    Type: Application
    Filed: February 13, 2004
    Publication date: December 30, 2004
    Inventors: Junko M. Watson, Francis P. Daly, Yong Wang, Anna Lee Tonkovich, Sean P. Fitzgerald, Steven T. Perry, Laura J. Silva, Rachid Taha, Enrique Aceves de Alba, Ya-Huei Chin, Robert Rozmiarek, XiaoHong Li
  • Publication number: 20040234566
    Abstract: The disclosed invention relates to a process for making an emulsion. The process comprises: flowing a first liquid through a process microchannel, the process microchannel having a wall with an apertured section; flowing a second liquid through the apertured section into the process microchannel in contact with the first liquid, the first liquid forming a continuous phase, the second liquid forming a discontinuous phase dispersed in the continuous phase.
    Type: Application
    Filed: May 12, 2004
    Publication date: November 25, 2004
    Inventors: Dongming Qiu, Anna Lee Tonkovich, Laura Silva, Richard Q. Long, Barry L. Yang, Kristina Marie Trenkamp
  • Publication number: 20040229752
    Abstract: A process is disclosed for converting a hydrocarbon reactant to a product comprising CO and H2. The process comprises: (A) flowing a reactant composition comprising the hydrocarbon reactant and oxygen or a source of oxygen through a microchannel reactor in contact with a catalyst under reaction conditions to form the product, the microchannel reactor comprising at least one process microchannel with the catalyst positioned within the process microchannel, the hydrocarbon reactant comprising methane, the contact time for the reactant composition within the process microchannel being up to about 500 milliseconds, the temperature of the reactant composition and product within the process microchannel being up to about 1150° C., the conversion of the hydrocarbon reactant to carbon oxide being at least about 50%. The product formed in step (A) may be converted to a product comprising CO2 and H2O in a microchannel reactor.
    Type: Application
    Filed: May 30, 2003
    Publication date: November 18, 2004
    Inventors: Richard Q. Long, Anna Lee Tonkovich, Eric Daymo, Barry L. Yang, Yong Wang, Francis P. Daly
  • Publication number: 20040228781
    Abstract: This invention relates to an apparatus, comprising: at least one process microchannel having a height, width and length, the height being up to about 10 mm, the process microchannel having a base wall extending in one direction along the width of the process microchannel and in another direction along the length of the process microchannel; at least one fin projecting into the process microchannel from the base wall and extending along at least part of the length of the process microchannel; and a catalyst or sorption medium supported by the fin.
    Type: Application
    Filed: May 16, 2003
    Publication date: November 18, 2004
    Inventors: Anna Lee Tonkovich, Dongming Qiu, Richard Q. Long, Barry L. Yang, Thomas Yuschak, Steven T. Perry
  • Publication number: 20040228882
    Abstract: The disclosed invention relates to a process for making an emulsion. The process comprises: flowing a first liquid through a process microchannel having a wall with an apertured section; flowing a second liquid through the apertured section into the process microchannel in contact with the first liquid, the second liquid being immiscible with the first liquid, the first liquid forming a continuous phase, and the second liquid forming a discontinuous phase dispersed in the first liquid.
    Type: Application
    Filed: May 16, 2003
    Publication date: November 18, 2004
    Inventors: Dongming Qiu, Anna Lee Tonkovich, Laura Silva, Richard Q. Long, Barry L. Yang, Kristina Marie Trenkamp
  • Publication number: 20040220434
    Abstract: This invention relates to a process for converting a hydrocarbon reactant to a product comprising an oxygenate or a nitrile, the process comprising: (A) flowing a reactant composition comprising the hydrocarbon reactant, and oxygen or a source of oxygen, and optionally ammonia, through a microchannel reactor in contact with a catalyst to convert the hydrocarbon reactant to the product, the hydrocarbon reactant undergoing an exothermic reaction in the microchannel reactor; (B) transferring heat from the microchannel reactor to a heat exchanger during step (A); and (C) quenching the product from step (A).
    Type: Application
    Filed: May 2, 2003
    Publication date: November 4, 2004
    Inventors: John H. Brophy, Frederick A. Pesa, Anna Lee Tonkovich, Jeffrey S. McDaniel, Kai Tod Paul Jarosch
  • Publication number: 20040199039
    Abstract: Methods of dehydrogenating hydrocarbons to yield unsaturated compounds are described. Reactor configurations useful for dehydrogenation are also described. Hydrocarbons can dehydrogenationed, for relatively long periods of time-on-stream, in a reaction chamber having a dimension of 2 mm or less to produce H2 and an olefin. Techniques have been developed that reduce coke and allow stable, relatively long-term operation in small reactors.
    Type: Application
    Filed: April 7, 2003
    Publication date: October 7, 2004
    Inventors: John H. Brophy, Anna Lee Tonkovich, Gary Roberts, Matthew B. Schmidt, G. Bradley Chadwell
  • Publication number: 20040099712
    Abstract: Novel methods of making laminated, microchannel devices are described. Examples include: assembly from thin strips rather than sheets; and hot isostatic pressing (HIPing) to form devices with a hermetically sealed wall. Laminated microchannel articles having novel features are also described. The invention includes processes conducted using any of the articles described.
    Type: Application
    Filed: November 27, 2002
    Publication date: May 27, 2004
    Inventors: Anna Lee Tonkovich, Gary Roberts, Sean P. Fitzgerald, Timothy M. Werner, Matthew B. Schmidt, Robert J. Luzenski, G. Bradley Chadwell, James A. Mathias, Abhishek Gupta, David J. Kuhlmann, Thomas D. Yuschak