Patents by Inventor Anna M. Phillips

Anna M. Phillips has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6924184
    Abstract: Via holes to the source/drains of a transistor are made to have very uniform depths so that photoresist thickness can be minimized to reduce the problems associated with small hole vias and vias that are at minimum pitches. This is achieved by polishing a dielectric over the gate stack to a polish stop present over the gate stack to result in having a top surface that is coplanar with the top surface of the polish stop layer over the gate stack. This establishes a top surface that is very uniform in height above the substrate across the wafer. A subsequent dielectric formed on this top surface is thus also very uniform in height over the wafer. The photoresist thickness then can be selected to the least thickness necessary based upon the expectation of maintaining a pattern for etching through a layer of very uniform thickness.
    Type: Grant
    Filed: March 21, 2003
    Date of Patent: August 2, 2005
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Nigel G. Cave, Anna M. Phillips, Terry G. Sparks
  • Patent number: 6891229
    Abstract: A method of forming a semiconductor device so as to provide the device inverted isolation trenches with convex sidewalls. Initially, a plurality of composite isolation posts (50, 51) are formed on a substrate (40) through successive deposition, lithography, and etching steps. The posts comprise a bottom layer (501, 502) of silicon dioxide and an overlying etch-stop layer of silicon nitride (502, 512). An insulating material (60) is then deposited over the isolation posts and areas of the substrate. Isolation structures (70,71) are established by etching the insulating material to form convex sidewall spacers (701,702, 711, 712) at the vertical walls of the isolation posts. Active areas (80) between spacers are filled with semiconductor material. In an embodiment, a strained cap layer (101) may be imposed on the active areas. The strained cap layer has a lattice constant that is different from the lattice constant of the semiconductor material.
    Type: Grant
    Filed: April 30, 2003
    Date of Patent: May 10, 2005
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Andrea Franke, Jonathan Cobb, John M. Grant, Al T. Koh, Yeong-Jyh T. Lii, Bich-Yen Nguyen, Anna M. Phillips
  • Patent number: 6881681
    Abstract: Heating a reaction chamber or other apparatus in the absence of product wafers to a “curing” temperature above a deposition temperature between the deposition of a film on a first set of semiconductor product wafers and the deposition of a film on a second set of semiconductor product wafers. In some embodiments, a boat with filler wafers is in the reaction chamber when the reaction chamber is heated to the curing temperature. In some examples, the films are deposited by a low pressure chemical vapor deposition (LPCVD) process. With some processes, if the deposition of a film on product wafers is at a temperature below a certain temperature, the film deposited with the product wafer on a boat, filler wafers, and/or other structures in the reaction chamber can cause contamination of product wafers subsequently deposited with a film in the presence of the boat and filler wafers.
    Type: Grant
    Filed: November 22, 2002
    Date of Patent: April 19, 2005
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Olubunmi O. Adetutu, Marc Rossow, Anna M. Phillips
  • Publication number: 20040217437
    Abstract: A method of forming a semiconductor device so as to provide the device inverted isolation trenches with convex sidewalls. Initially, a plurality of composite isolation posts (50, 51) are formed on a substrate (40) through successive deposition, lithography, and etching steps. The posts comprise a bottom layer (501, 502) of silicon dioxide and an overlying etch-stop layer of silicon nitride (502, 512). An insulating material (60) is then deposited over the isolation posts and areas of the substrate. Isolation structures (70,71) are established by etching the insulating material to form convex sidewall spacers (701,702, 711, 712) at the vertical walls of the isolation posts. Active areas (80) between spacers are filled with semiconductor material. In an embodiment, a strained cap layer (101) may be imposed on the active areas. The strained cap layer has a lattice constant that is different from the lattice constant of the semiconductor material.
    Type: Application
    Filed: April 30, 2003
    Publication date: November 4, 2004
    Inventors: Andrea Franke, Jonathan Cobb, John M. Grant, Al T. Koh, Yeong-Jyh T. Lii, Bich-Yen Nguyen, Anna M. Phillips
  • Publication number: 20040183204
    Abstract: Via holes to the source/drains of a transistor are made to have very uniform depths so that photoresist thickness can be minimized to reduce the problems associated with small hole vias and vias that are at minimum pitches. This is achieved by polishing a dielectric over the gate stack to a polish stop present over the gate stack to result in having a top surface that is coplanar with the top surface of the polish stop layer over the gate stack. This establishes a top surface that is very uniform in height above the substrate across the wafer. A subsequent dielectric formed on this top surface is thus also very uniform in height over the wafer. The photoresist thickness then can be selected to the least thickness necessary based upon the expectation of maintaining a pattern for etching through a layer of very uniform thickness.
    Type: Application
    Filed: March 21, 2003
    Publication date: September 23, 2004
    Inventors: Nigel G. Cave, Anna M. Phillips, Terry G. Sparks
  • Publication number: 20040102040
    Abstract: Heating a reaction chamber or other apparatus in the absence of product wafers to a “curing” temperature above a deposition temperature between the deposition of a film on a first set of semiconductor product wafers and the deposition of a film on a second set of semiconductor product wafers. In some embodiments, a boat with filler wafers is in the reaction chamber when the reaction chamber is heated to the curing temperature. In some examples, the films are deposited by a low pressure chemical vapor deposition (LPCVD) process. With some processes, if the deposition of a film on product wafers is at a temperature below a certain temperature, the film deposited with the product wafer on a boat, filler wafers, and/or other structures in the reaction chamber can cause contamination of product wafers subsequently deposited with a film in the presence of the boat and filler wafers.
    Type: Application
    Filed: November 22, 2002
    Publication date: May 27, 2004
    Inventors: Olubunmi O. Adetutu, Marc Rossow, Anna M. Phillips