Patents by Inventor Anna Sara McLeland

Anna Sara McLeland has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10606182
    Abstract: The present disclosure relates generally to a method to make a chemically prepared toner that employs a crash cooling process. In the crash cooling process, hot toner slurry is added to an external reactor containing a coolant comprised of previously cooled toner slurry in combination with cooled de-ionized water. The previously cooled toner slurry found in the coolant has the same toner composition as the incoming hot toner slurry. Also, the amount of the coolant in the external reactor is equivalent to the amount of incoming hot toner slurry. Polyester toners and polyester core shell toners having a borax coupling agent between the toner core and toner shell made from this crash cooling process results in an improvement to the toner performance especially a decrease in the overall toner usage.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: March 31, 2020
    Assignee: LEXMARK INTERNATIONAL, INC.
    Inventors: Kasturi Rangan Srinivasan, Anna Sara McLeland, Rahel Bekru Bogale
  • Patent number: 10591834
    Abstract: The present disclosure relates generally to a method to make a chemically prepared toner that employs a crash cooling process. In the crash cooling process, an amount of hot toner slurry is added to an external reactor holding an amount of chilled cooling water, wherein the temperature of the chilled cooling water in the external reactor is from about 8° C. to about 25° C. The amount of the chilled cooling water in the external reactor is about 10% to about 40% lower compared to the amount of the added hot toner slurry. Toner prepared using this crash cooling method is cooled at a rate of less than 0.8° C./min. Polyester toners and polyester core shell toners having a borax coupling agent between the toner core and toner shell made from this crash cooling processes using less water results in an improvement to the toner's print density and usage efficiency.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: March 17, 2020
    Assignee: LEXMARK INTERNATIONAL, INC.
    Inventors: Kasturi Rangan Srinivasan, Anna Sara McLeland, Rahel Bekru Bogale, Trent Duane Peter
  • Patent number: 10591832
    Abstract: The present disclosure relates generally to a method to make a chemically prepared toner that employs a crash cooling process. In the crash cooling process, hot toner slurry is added to an external reactor containing a coolant comprised of previously cooled toner slurry in combination with cooled de-ionized water. The previously cooled toner slurry found in the coolant has the same toner composition as the incoming hot toner slurry. Also, the amount of the coolant in the external reactor is equivalent to the amount of incoming hot toner slurry. Polyester toners and polyester core shell toners having a borax coupling agent between the toner core and toner shell made from this crash cooling process results in an improvement to the toner performance especially a decrease in the overall toner usage.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: March 17, 2020
    Assignee: LEXMARK INTERNATIONAL, INC.
    Inventors: Kasturi Rangan Srinivasan, Anna Sara McLeland, Rahel Bekru Bogale
  • Patent number: 10591831
    Abstract: The present disclosure relates generally to a method to make a chemically prepared toner that employs a crash cooling process. In the crash cooling process, hot toner slurry is added to an external reactor containing a coolant comprised of previously cooled toner slurry in combination with cooled de-ionized water. The previously cooled toner slurry found in the coolant has the same toner composition as the incoming hot toner slurry. Also, the amount of the coolant in the external reactor is equivalent to the amount of incoming hot toner slurry. Polyester toners and polyester core shell toners having a borax coupling agent between the toner core and toner shell made from this crash cooling process results in an improvement to the toner performance especially a decrease in the overall toner usage.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: March 17, 2020
    Assignee: LEXMARK INTERNATIONAL, INC.
    Inventors: Kasturi Rangan Srinivasan, Anna Sara McLeland, Rahel Bekru Bogale
  • Patent number: 10591835
    Abstract: The present disclosure relates generally to a method to make a chemically prepared toner that employs a crash cooling process. In the crash cooling process, an amount of hot toner slurry is added to an external reactor holding an amount of chilled cooling water, wherein the temperature of the chilled cooling water in the external reactor is from about 8° C. to about 25° C. The amount of the chilled cooling water in the external reactor is about 10% to about 40% lower compared to the amount of the added hot toner slurry. Toner prepared using this crash cooling method is cooled at a rate of less than 0.8° C./min. Polyester toners and polyester core shell toners having a borax coupling agent between the toner core and toner shell made from this crash cooling processes using less water results in an improvement to the toner's print density and usage efficiency.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: March 17, 2020
    Assignee: LEXMARK INTERNATIONAL, INC.
    Inventors: Kasturi Rangan Srinivasan, Anna Sara McLeland, Rahel Bekru Bogale, Trent Duane Peter
  • Patent number: 10591833
    Abstract: The present disclosure relates generally to a method to make a chemically prepared toner that employs a crash cooling process. In the crash cooling process, an amount of hot toner slurry is added to an external reactor holding an amount of chilled cooling water, wherein the temperature of the chilled cooling water in the external reactor is from about 8° C. to about 25° C. The amount of the chilled cooling water in the external reactor is about 10% to about 40% lower compared to the amount of the added hot toner slurry. Toner prepared using this crash cooling method is cooled at a rate of less than 0.8° C./min. Polyester toners and polyester core shell toners having a borax coupling agent between the toner core and toner shell made from this crash cooling processes using less water results in an improvement to the toner's print density and usage efficiency.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: March 17, 2020
    Assignee: LEXMARK INTERNATIONAL, INC.
    Inventors: Kasturi Rangan Srinivasan, Anna Sara McLeland, Rahel Bekru Bogale, Trent Duane Peter
  • Publication number: 20190243264
    Abstract: The present disclosure relates generally to a method to make a chemically prepared toner that employs a crash cooling process. In the crash cooling process, hot toner slurry is added to an external reactor containing a coolant comprised of previously cooled toner slurry in combination with cooled de-ionized water. The previously cooled toner slurry found in the coolant has the same toner composition as the incoming hot toner slurry. Also, the amount of the coolant in the external reactor is equivalent to the amount of incoming hot toner slurry. Polyester toners and polyester core shell toners having a borax coupling agent between the toner core and toner shell made from this crash cooling process results in an improvement to the toner performance especially a decrease in the overall toner usage.
    Type: Application
    Filed: April 16, 2019
    Publication date: August 8, 2019
    Inventors: KASTURI RANGAN SRINIVASAN, ANNA SARA MCLELAND, RAHEL BEKRU BOGALE
  • Publication number: 20190243267
    Abstract: The present disclosure relates generally to a method to make a chemically prepared toner that employs a crash cooling process. In the crash cooling process, an amount of hot toner slurry is added to an external reactor holding an amount of chilled cooling water, wherein the temperature of the chilled cooling water in the external reactor is from about 8° C. to about 25° C. The amount of the chilled cooling water in the external reactor is about 10% to about 40% lower compared to the amount of the added hot toner slurry. Toner prepared using this crash cooling method is cooled at a rate of less than 0.8° C./min. Polyester toners and polyester core shell toners having a borax coupling agent between the toner core and toner shell made from this crash cooling processes using less water results in an improvement to the toner's print density and usage efficiency.
    Type: Application
    Filed: April 16, 2019
    Publication date: August 8, 2019
    Inventors: KASTURI RANGAN SRINIVASAN, ANNA SARA MCLELAND, RAHEL BEKRU BOGALE, TRENT DUANE PETER
  • Publication number: 20190243265
    Abstract: The present disclosure relates generally to a method to make a chemically prepared toner that employs a crash cooling process. In the crash cooling process, an amount of hot toner slurry is added to an external reactor holding an amount of chilled cooling water, wherein the temperature of the chilled cooling water in the external reactor is from about 8° C. to about 25° C. The amount of the chilled cooling water in the external reactor is about 10% to about 40% lower compared to the amount of the added hot toner slurry. Toner prepared using this crash cooling method is cooled at a rate of less than 0.8° C./min. Polyester toners and polyester core shell toners having a borax coupling agent between the toner core and toner shell made from this crash cooling processes using less water results in an improvement to the toner's print density and usage efficiency.
    Type: Application
    Filed: April 16, 2019
    Publication date: August 8, 2019
    Inventors: KASTURI RANGAN SRINIVASAN, ANNA SARA MCLELAND, RAHEL BEKRU BOGALE, TRENT DUANE PETER
  • Publication number: 20190243263
    Abstract: The present disclosure relates generally to a method to make a chemically prepared toner that employs a crash cooling process. In the crash cooling process, hot toner slurry is added to an external reactor containing a coolant comprised of previously cooled toner slurry in combination with cooled de-ionized water. The previously cooled toner slurry found in the coolant has the same toner composition as the incoming hot toner slurry. Also, the amount of the coolant in the external reactor is equivalent to the amount of incoming hot toner slurry. Polyester toners and polyester core shell toners having a borax coupling agent between the toner core and toner shell made from this crash cooling process results in an improvement to the toner performance especially a decrease in the overall toner usage.
    Type: Application
    Filed: April 16, 2019
    Publication date: August 8, 2019
    Inventors: KASTURI RANGAN SRINIVASAN, ANNA SARA MCLELAND, RAHEL BEKRU BOGALE
  • Publication number: 20190243266
    Abstract: The present disclosure relates generally to a method to make a chemically prepared toner that employs a crash cooling process. In the crash cooling process, an amount of hot toner slurry is added to an external reactor holding an amount of chilled cooling water, wherein the temperature of the chilled cooling water in the external reactor is from about 8° C. to about 25° C. The amount of the chilled cooling water in the external reactor is about 10% to about 40% lower compared to the amount of the added hot toner slurry. Toner prepared using this crash cooling method is cooled at a rate of less than 0.8° C./min. Polyester toners and polyester core shell toners having a borax coupling agent between the toner core and toner shell made from this crash cooling processes using less water results in an improvement to the toner's print density and usage efficiency.
    Type: Application
    Filed: April 16, 2019
    Publication date: August 8, 2019
    Inventors: Kasturi Rangan Srinivasan, Anna Sara McLeland, Rahel Berku Bogale, Trent Duane Peter
  • Publication number: 20190243262
    Abstract: The present disclosure relates generally to a method to make a chemically prepared toner that employs a crash cooling process. In the crash cooling process, hot toner slurry is added to an external reactor containing a coolant comprised of previously cooled toner slurry in combination with cooled de-ionized water. The previously cooled toner slurry found in the coolant has the same toner composition as the incoming hot toner slurry. Also, the amount of the coolant in the external reactor is equivalent to the amount of incoming hot toner slurry. Polyester toners and polyester core shell toners having a borax coupling agent between the toner core and toner shell made from this crash cooling process results in an improvement to the toner performance especially a decrease in the overall toner usage.
    Type: Application
    Filed: April 16, 2019
    Publication date: August 8, 2019
    Inventors: KASTURI RANGAN SRINIVASAN, ANNA SARA MCLELAND, RAHEL BEKRU BOGALE