Patents by Inventor Anne AGUIRRE

Anne AGUIRRE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230416813
    Abstract: This disclosure provides a biochip comprising a plurality of wells. The biochip includes a membrane that is disposed in or adjacent to an individual well of the plurality of wells. The membrane comprises a nanopore, and the individual well comprises an electrode that detects a signal upon ionic flow through the pore in response to a species passing through or adjacent to the nanopore. The electrode can be a non-sacrificial electrode. A lipid bilayer can be formed over the plurality of wells using a bubble.
    Type: Application
    Filed: June 19, 2023
    Publication date: December 28, 2023
    Applicant: Roche Sequencing Solutions, Inc.
    Inventors: Randall W. Davis, Edward Shian Liu, Eric Takeshi Harada, Anne Aguirre, Andrew Trans, James Pollard, Cynthia Cech
  • Patent number: 11725236
    Abstract: This disclosure provides a biochip comprising a plurality of wells. The biochip includes a membrane that is disposed in or adjacent to an individual well of the plurality of wells. The membrane comprises a nanopore, and the individual well comprises an electrode that detects a signal upon ionic flow through the pore in response to a species passing through or adjacent to the nanopore. The electrode can be a non-sacrificial electrode. A lipid bilayer can be formed over the plurality of wells using a bubble.
    Type: Grant
    Filed: April 27, 2021
    Date of Patent: August 15, 2023
    Inventors: Randall W. Davis, Edward Shian Liu, Eric Takeshi Harada, Anne Aguirre, Andrew Trans, James Pollard, Cynthia Cech
  • Publication number: 20210324462
    Abstract: This disclosure provides a biochip comprising a plurality of wells. The biochip includes a membrane that is disposed in or adjacent to an individual well of the plurality of wells. The membrane comprises a nanopore, and the individual well comprises an electrode that detects a signal upon ionic flow through the pore in response to a species passing through or adjacent to the nanopore. The electrode can be a non-sacrificial electrode. A lipid bilayer can be formed over the plurality of wells using a bubble.
    Type: Application
    Filed: April 27, 2021
    Publication date: October 21, 2021
    Applicant: Roche Sequencing Solutions, Inc.
    Inventors: Randall W. DAVIS, Edward Shian LIU, Eric Takeshi HARADA, Anne AGUIRRE, Andrew TRANS, James POLLARD, Cynthia CECH
  • Patent number: 11021745
    Abstract: This disclosure provides a biochip comprising a plurality of wells. The biochip includes a membrane that is disposed in or adjacent to an individual well of the plurality of wells. The membrane comprises a nanopore, and the individual well comprises an electrode that detects a signal upon ionic flow through the pore in response to a species passing through or adjacent to the nanopore. The electrode can be a non-sacrificial electrode. A lipid bilayer can be formed over the plurality of wells using a bubble.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: June 1, 2021
    Assignee: Roche Sequencing Solutions, Inc.
    Inventors: Randall W. Davis, Edward Shian Liu, Eric Takeshi Harada, Anne Aguirre, Andrew Trans, James Pollard, Cynthia Cech
  • Publication number: 20190185927
    Abstract: This disclosure provides a biochip comprising a plurality of wells. The biochip includes a membrane that is disposed in or adjacent to an individual well of the plurality of wells. The membrane comprises a nanopore, and the individual well comprises an electrode that detects a signal upon ionic flow through the pore in response to a species passing through or adjacent to the nanopore. The electrode can be a non-sacrificial electrode. A lipid bilayer can be formed over the plurality of wells using a bubble.
    Type: Application
    Filed: February 11, 2019
    Publication date: June 20, 2019
    Applicant: Genia Technologies, Inc.
    Inventors: Randall W. DAVIS, Edward Shian LIU, Eric Takeshi HARADA, Anne AGUIRRE, Andrew TRANS, James POLLARD, Cynthia CECH
  • Patent number: 10273536
    Abstract: A biochip for molecular detection and sensing is disclosed. The biochip includes a substrate. The biochip includes a plurality of discrete sites formed on the substrate having a density of greater than five hundred wells per square millimeter. Each discrete site includes sidewalls disposed on the substrate to form a well. Each discrete site includes an electrode disposed at the bottom of the well. In some embodiments, the wells are formed such that cross-talk between the wells is reduced. In some embodiments, the electrodes disposed at the bottom of the wells are organized into groups of electrodes, wherein each group of electrodes shares a common counter electrode. In some embodiments, the electrode disposed at the bottom of the well has a dedicated counter electrode. In some embodiments, surfaces of the sidewalls are silanized such that the surfaces facilitate the forming of a membrane in or adjacent to the well.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: April 30, 2019
    Assignees: GENIA TECHNOLOGIES, INC., ROCHE MOLECULAR SYSTEMS, INC.
    Inventors: Randall W. Davis, Edward Shian Liu, Eric Takeshi Harada, Anne Aguirre, Andrew Trans, James Pollard, Cynthia Cech, Hui Tian, Robert Yuan, John Foster, Roger Chen
  • Patent number: 10246743
    Abstract: This disclosure provides a biochip comprising a plurality of wells. The biochip includes a membrane that is disposed in or adjacent to an individual well of the plurality of wells. The membrane comprises a nanopore, and the individual well comprises an electrode that detects a signal upon ionic flow through the pore in response to a species passing through or adjacent to the nanopore. The electrode can be a non-sacrificial electrode. A lipid bilayer can be formed over the plurality of wells using a bubble.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: April 2, 2019
    Assignee: GENIA TECHNOLOGIES, INC.
    Inventors: Randall W. Davis, Edward Shian Liu, Eric Takeshi Harada, Anne Aguirre, Andrew Trans, James Pollard, Cynthia Cech
  • Publication number: 20170198343
    Abstract: This disclosure provides a biochip comprising a plurality of wells. The biochip includes a membrane that is disposed in or adjacent to an individual well of the plurality of wells. The membrane comprises a nanopore, and the individual well comprises an electrode that detects a signal upon ionic flow through the pore in response to a species passing through or adjacent to the nanopore. The electrode can be a non-sacrificial electrode. A lipid bilayer can be formed over the plurality of wells using a bubble.
    Type: Application
    Filed: December 20, 2016
    Publication date: July 13, 2017
    Inventors: Randall W. DAVIS, Edward Shian LIU, Eric Takeshi HARADA, Anne AGUIRRE, Andrew TRANS, James POLLARD, Cynthia CECH
  • Patent number: 9567630
    Abstract: This disclosure provides a biochip comprising a plurality of wells. The biochip includes a membrane that is disposed in or adjacent to an individual well of the plurality of wells. The membrane comprises a nanopore, and the individual well comprises an electrode that detects a signal upon ionic flow through the pore in response to a species passing through or adjacent to the nanopore. The electrode can be a non-sacrificial electrode. A lipid bilayer can be formed over the plurality of wells using a bubble.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: February 14, 2017
    Assignee: Genia Technologies, Inc.
    Inventors: Randall W. Davis, Edward Shian Liu, Eric Takeshi Harada, Anne Aguirre, Andrew Trans, James Pollard, Cynthia Cech
  • Publication number: 20160327507
    Abstract: A biochip for molecular detection and sensing is disclosed. The biochip includes a substrate. The biochip includes a plurality of discrete sites formed on the substrate having a density of greater than five hundred wells per square millimeter. Each discrete site includes sidewalls disposed on the substrate to form a well. Each discrete site includes an electrode disposed at the bottom of the well. In some embodiments, the wells are formed such that cross-talk between the wells is reduced. In some embodiments, the electrodes disposed at the bottom of the wells are organized into groups of electrodes, wherein each group of electrodes shares a common counter electrode. In some embodiments, the electrode disposed at the bottom of the well has a dedicated counter electrode. In some embodiments, surfaces of the sidewalls are silanized such that the surfaces facilitate the forming of a membrane in or adjacent to the well.
    Type: Application
    Filed: March 10, 2016
    Publication date: November 10, 2016
    Inventors: Randall W. DAVIS, Edward Shian LIU, Eric Takeshi HARADA, Anne AGUIRRE, Andrew TRANS, James POLLARD, Cynthia CECH, Hui TIAN, Robert YUAN, John FOSTER, Roger CHEN
  • Patent number: 9322062
    Abstract: A biochip for molecular detection and sensing is disclosed. The biochip includes a substrate. The biochip includes a plurality of discrete sites formed on the substrate having a density of greater than five hundred wells per square millimeter. Each discrete site includes sidewalls disposed on the substrate to form a well. Each discrete site includes an electrode disposed at the bottom of the well. In some embodiments, the wells are formed such that cross-talk between the wells is reduced. In some embodiments, the electrodes disposed at the bottom of the wells are organized into groups of electrodes, wherein each group of electrodes shares a common counter electrode. In some embodiments, the electrode disposed at the bottom of the well has a dedicated counter electrode. In some embodiments, surfaces of the sidewalls are silanized such that the surfaces facilitate the forming of a membrane in or adjacent to the well.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: April 26, 2016
    Inventors: Randall W. Davis, Edward Shian Liu, Eric Takeshi Harada, Anne Aguirre, Andrew Trans, James Pollard, Cynthia Cech, Hui Tian, Robert Yuan, John Foster, Roger Chen
  • Publication number: 20150153302
    Abstract: A biochip for molecular detection and sensing is disclosed. The biochip includes a substrate. The biochip includes a plurality of discrete sites formed on the substrate having a density of greater than five hundred wells per square millimeter. Each discrete site includes sidewalls disposed on the substrate to form a well. Each discrete site includes an electrode disposed at the bottom of the well. In some embodiments, the wells are formed such that cross-talk between the wells is reduced. In some embodiments, the electrodes disposed at the bottom of the wells are organized into groups of electrodes, wherein each group of electrodes shares a common counter electrode. In some embodiments, the electrode disposed at the bottom of the well has a dedicated counter electrode. In some embodiments, surfaces of the sidewalls are silanized such that the surfaces facilitate the forming of a membrane in or adjacent to the well.
    Type: Application
    Filed: October 22, 2014
    Publication date: June 4, 2015
    Inventors: Randall W. DAVIS, Edward Shian LIU, Eric Takeshi HARADA, Anne AGUIRRE, Andrew TRANS, James POLLARD, Cynthia CECH
  • Publication number: 20150152494
    Abstract: This disclosure provides a biochip comprising a plurality of wells. The biochip includes a membrane that is disposed in or adjacent to an individual well of the plurality of wells. The membrane comprises a nanopore, and the individual well comprises an electrode that detects a signal upon ionic flow through the pore in response to a species passing through or adjacent to the nanopore. The electrode can be a non-sacrificial electrode. A lipid bilayer can be formed over the plurality of wells using a bubble.
    Type: Application
    Filed: October 22, 2014
    Publication date: June 4, 2015
    Inventors: Randall W. DAVIS, Edward Shian LIU, Eric Takeshi HARADA, Anne AGUIRRE, Andrew TRANS, James POLLARD, Cynthia CECH