Patents by Inventor Anne Lauwers

Anne Lauwers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7851297
    Abstract: A dual workfunction semiconductor device which comprises a first and second control electrode comprising a metal-semiconductor compound, e.g. a silicide or a germanide, and a dual workfunction semiconductor device thus obtained are disclosed. In one aspect, the method comprises forming a blocking region for preventing diffusion of metal from the metal-semiconductor compound of the first control electrode to the metal-semiconductor compound of the second control electrode, the blocking region being formed at a location where an interface between the first and second control electrodes is to be formed or is formed. By preventing metal to diffuse from the one to the other control electrode the constitution of the metal-semiconductor compounds of the first and second control electrodes may remain substantially unchanged during e.g. thermal steps in further processing of the device.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: December 14, 2010
    Assignee: IMEC
    Inventors: Stefan Jakschik, Jorge Adrian Kittl, Marcus Johannes Henricus van Dal, Anne Lauwers, Masaaki Niwa
  • Patent number: 7759748
    Abstract: A semiconductor device is disclosed that comprises a fully silicided electrode formed of an alloy of a semiconductor material and a metal, a workfunction modulating element for modulating a workfunction of the alloy, and a dielectric in contact with the fully silicided electrode. At least a part of the dielectric which is in direct contact with the fully silicided electrode comprises a stopping material for substantially preventing the workfunction modulating element from implantation into and/or diffusing towards the dielectric. A method for forming such a semiconductor device is also disclosed.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: July 20, 2010
    Assignees: IMEC, Taiwan Semiconductor Manufacturing Company Ltd. (TSMC)
    Inventors: HongYu Yu, Shou-Zen Chang, Jorge Adrian Kittl, Anne Lauwers, Anabela Veloso
  • Patent number: 7491635
    Abstract: A method for manufacturing a MOSFET device with a fully silicided (FUSI) gate is described. This method may be used to prevent formation of shorts between the FUSI gate and a contact to a source and/or a drain region. In particular, the method discloses the formation of an expansion volume above a gate dielectric. The volume is designed to substantially contain the fully silicided gate.
    Type: Grant
    Filed: July 11, 2006
    Date of Patent: February 17, 2009
    Assignees: Interuniversitair Microelektronica Centrum, Texas Instruments Incorporated, Koninklijke Philips Electronics
    Inventors: Jorge Adrian Kittl, Anne Lauwers, Anabela Veloso, Anil Kottantharyil, Marcus Johannes Henricus Van Dal
  • Publication number: 20090020821
    Abstract: A dual workfunction semiconductor device which comprises a first and second control electrode comprising a metal-semiconductor compound, e.g. a silicide or a germanide, and a dual workfunction semiconductor device thus obtained are disclosed. In one aspect, the method comprises forming a blocking region for preventing diffusion of metal from the metal-semiconductor compound of the first control electrode to the metal-semiconductor compound of the second control electrode, the blocking region being formed at a location where an interface between the first and second control electrodes is to be formed or is formed. By preventing metal to diffuse from the one to the other control electrode the constitution of the metal-semiconductor compounds of the first and second control electrodes may remain substantially unchanged during e.g. thermal steps in further processing of the device.
    Type: Application
    Filed: June 24, 2008
    Publication date: January 22, 2009
    Applicant: Interuniversitair Microelektronica Centrum vzw (IMEC)
    Inventors: Stefan Jakschik, Jorge Adrian Kittl, Marcus Johannes Henricus van Dal, Anne Lauwers, Masaaki Niwa
  • Publication number: 20080191286
    Abstract: The present disclosure provides a dual workfunction semiconductor device and a method for manufacturing a dual workfunction semiconductor device. The method comprises providing a device on a first region and a device on a second region of a substrate. According to embodiments described herein, the method includes providing a dielectric layer onto the first and second region of the substrate, the dielectric layer on the first region being integrally deposited with the dielectric layer on the second region, and providing a gate electrode on top of the dielectric layer on both the first and second regions, the gate electrode on the first region being integrally deposited with the gate electrode on the second region.
    Type: Application
    Filed: January 10, 2008
    Publication date: August 14, 2008
    Applicants: INTERUNIVERSITAIR MICROELEKTRONICA CENTRUM (IMEC), TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shou-Zen Chang, Hong Yu Yu, Anabela Veloso, Rita Vos, Stefan Kubicek, Serge Biesemans, Raghunath Singanamalla, Anne Lauwers, Bart Onsia
  • Publication number: 20080136030
    Abstract: A semiconductor device is provided comprising a main electrode (4) and a dielectric (3) in contact with the main electrode (4), the main electrode (4) comprising a material having a work function and a work function modulating element (6) for modulating the work function of the material of the main electrode (4) towards a predetermined value. The main electrode (4) furthermore comprises a diffusion preventing dopant element (5) for preventing diffusion of the work function modulating element (6) towards and/or into the dielectric (3). Methods for forming such a semiconductor device are also described.
    Type: Application
    Filed: October 23, 2007
    Publication date: June 12, 2008
    Applicants: Interuniversitair MicroelektronicaCentrum (IMEC), Texas Instruments Inc., Taiwan Semiconductor Manufacturing Company Ltd.
    Inventors: Shou-Zen Chang, Jorge Adrian Kittl, HongYu Yu, Anne Lauwers, Anabela Veloso
  • Publication number: 20080105933
    Abstract: A semiconductor device is disclosed that comprises a fully silicided electrode formed of an alloy of a semiconductor material and a metal, a workfunction modulating element for modulating a workfunction of the alloy, and a dielectric in contact with the fully silicided electrode. At least a part of the dielectric which is in direct contact with the fully silicided electrode comprises a stopping material for substantially preventing the workfunction modulating element from implantation into and/or diffusing towards the dielectric. A method for forming such a semiconductor device is also disclosed.
    Type: Application
    Filed: October 23, 2007
    Publication date: May 8, 2008
    Applicants: Interuniversitair Microelektronica Centrum (IMEC), Texas Instruments Inc., Taiwan Semiconductor Manufacturing company Ltd.
    Inventors: HongYu Yu, Shou-Zen Chang, Jorge Kittl, Anne Lauwers, Anabela Veloso
  • Publication number: 20080057685
    Abstract: A method for forming doped metal-semiconductor compound regions in a substrate is disclosed. In one aspect, a method for forming silicide regions in a substrate comprises partially regrowing an upper amorphous region on top of a crystalline part of the substrate, after having doped the upper amorphous region, to form a regrown region, thereby leaving a remaining upper amorphous region in between the regrown region and the major surface of the substrate. The remaining upper amorphous region is used for forming the metal-semiconductor compound.
    Type: Application
    Filed: July 30, 2007
    Publication date: March 6, 2008
    Applicants: Interuniversitair Microelektronica Centrum (IMEC) vzw, Koninklijke Philips Electronics
    Inventors: Bartlomiej Pawlak, Anne Lauwers
  • Publication number: 20070015334
    Abstract: A method for manufacturing a MOSFET device with a fully silicided (FUSI) gate is described. This method may be used to prevent formation of shorts between the FUSI gate and a contact to a source and/or a drain region. In particular, the method discloses the formation of an expansion volume above a gate dielectric. The volume is designed to substantially contain the fully silicided gate.
    Type: Application
    Filed: July 11, 2006
    Publication date: January 18, 2007
    Applicants: Interuniversitair Microelektronica Centrum (IMEC), Texas Instruments Incorporated, Koninklijke Philips Electronics
    Inventors: Jorge Kittl, Anne Lauwers, Anabela Veloso, Anil Kottantharyil, Marcus Van Dal
  • Publication number: 20060263961
    Abstract: A method for manufacturing CMOS devices with fully silicided (FUSI) gates is described. A metallic gate electrode of an NMOS transistor and a metallic gate electrode of a pMOS transistor have a different work function. The work function of each transistor type is determined by selecting a thickness of a corresponding semiconductor gate electrode and a thermal budget of a first thermal step such that, during silicidation, different silicide phases are obtained on the nMOS and the pMOS transistors. The work function of each type of transistor can be adjusted by selectively doping the semiconductor material prior to the formation of the silicide.
    Type: Application
    Filed: May 12, 2006
    Publication date: November 23, 2006
    Applicants: Interuniversitair Microelektronica Centrum (IMEC), Koninklijke Phillips Electronics, Texas Instruments Incorporated
    Inventors: Jorge Kittl, Anne Lauwers, Anabela Veloso, Anil Kottantharayil, Marcus van Dal
  • Publication number: 20020151170
    Abstract: The present invention is related to a method of forming a polycrystalline cobalt disilicide or another near noble metal silicide on a silicon substrate. The method comprises the steps of depositing a layer or layers comprising a cobalt-alloy (Ni, Pd, Pt) and a refractory metal on at least a part of said substrate, said part comprising at least a first and a second part, said second part being covered; thereafter heating said silicon substrate in a first heating step and a second heating step and therebetween treating said substrate with at least one chemical solution, said chemical solution selectively etching non-silicidecobalt (or Ni, Pd, Pt) and said refractory metal and cobalt-refractory (or Ni, Pd, Pt-refractory) metal alloys from said substrate except from said first part.
    Type: Application
    Filed: April 21, 2000
    Publication date: October 17, 2002
    Inventors: Karen Maex, Christophe Detavernier, Roland Vanmeirhaeghe, Muriel de Potter de ten Broeck, Anne Lauwers