Patents by Inventor Anne Mae Gaffney

Anne Mae Gaffney has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8105972
    Abstract: A catalyst for the oxidative dehydrogenation of a paraffin to form an olefin, the catalyst having a general formula MoaVbXcYdOn wherein: X=at least one of Nb and Ta; Y=at least one of Te, Sb, Ga, Pd, W, Bi and Al; a=1.0; b=0.05 to 1.0; c=0.001 to 1.0; d=0.001 to 1.0; and n is determined by the oxidation states of the other elements. The catalyst may have a selectivity to the olefin of at least 90 mole % at a paraffin conversion of at least 65%.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: January 31, 2012
    Assignee: Lummus Technology Inc.
    Inventors: Anne Mae Gaffney, Ruma Ghosh, Ruozhi Song, Chuen Yuan Yeh, Tadeusz Langner
  • Patent number: 8105971
    Abstract: A process for forming a catalyst useful for the production of an olefin from a hydrocarbon is disclosed. The process may include: admixing at least one of elemental metals and compounds to form a multi-metal composition comprising Mo, V, Nb, Te and at least one of Ni and Sb; adjusting the pH of the multi-metal composition by adding nitric acid; drying the acidified multi-metal composition; calcining the dried multi-metal composition; and grinding the calcined multi-metal composition. The ground multi-metal composition may then be sized or shaped to form a mixed metal oxide catalyst. Alternatively, the ground multi-metal composition may be treated with an acid, optionally annealed, and sized or shaped to form a mixed metal oxide catalyst.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: January 31, 2012
    Assignee: Lummus Technology Inc.
    Inventors: Anne Mae Gaffney, Ruma Ghosh, Ruozhi Song, Chuen Yuan Yeh, Tadeusz Langner
  • Patent number: 8105968
    Abstract: Solid acid catalysts for use in alkylation processes are described. The solid acid catalysts include a multimetallic (e.g. bimetallic, trimetallic or tetrametallic) component that performs a hydrogenating function for the reactivation (or regeneration) of the catalyst in the presence of hydrogen. The multimetallic catalyst includes a noble metal such as platinum or palladium. The invention also relates to alkylation processes using the multimetallic solid acid catalysts having a multimetallic component for hydrogenation.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: January 31, 2012
    Assignee: Lummus Technology Inc.
    Inventors: Anne Mae Gaffney, Philip Jay Angevine, Cheun Yuan Yeh, Johannes Hendrik Koegler, Jingguang Chen, Emanuel Hermanus van Broekhoven
  • Patent number: 8049036
    Abstract: Alkenes, unsaturated saturated carboxylic acids, saturated carboxylic acids and their higher analogues are prepared cumulatively from corresponding alkanes utilizing using a multi-staged catalyst system and a multi-stage process which comprises steam cracking of alkanes to corresponding alkenes at flame temperatures and at short contact times in combination with one or more oxidation catalysts for catalytically converting the corresponding alkenes to further corresponding oxygenated products using short contact time reactor conditions.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: November 1, 2011
    Assignee: Rohm and Haas Company
    Inventors: Abraham Benderly, Anne Mae Gaffney, Mark Anthony Silvano
  • Publication number: 20110105784
    Abstract: Alkenes, unsaturated saturated carboxylic acids, saturated carboxylic acids and their higher analogues are prepared cumulatively from corresponding alkanes utilizing using a multi-staged catalyst system and a multi-stage process which comprises steam cracking of alkanes to corresponding alkenes at flame temperatures and at short contact times in combination with one or more oxidation catalysts for catalytically converting the corresponding alkenes to further corresponding oxygenated products using short contact time reactor conditions.
    Type: Application
    Filed: January 18, 2008
    Publication date: May 5, 2011
    Inventors: Abraham Benderly, Anne Mae Gaffney, Mark Anthony Silvano
  • Publication number: 20110040134
    Abstract: Processes are provided for the production of butadiene from C4 containing feed stocks that contain isobutene and/or isobutane in addition to n-butene(s) and/or n-butane. The processes of the present invention generally comprise feeding the feed stock to a combination butenes isomerization reaction and distillation tower for conversion of 1-butene to 2-butenes and separation from isobutene and isobutane, followed by an oxydehydrogenation unit to convert n-butenes to butadiene. The processes may also include additional isomerization and/or dehydrogenation steps for the tower overhead and bottoms streams to create additional isobutene and/or n-butenes for valued uses, which may include additional production of butadiene. The feed to the system may comprise any mixture or separate feeding of C4 olefins and C4 paraffins, at least one of which contains isobutene and/or isobutane.
    Type: Application
    Filed: August 17, 2009
    Publication date: February 17, 2011
    Inventors: Stephen Craig Arnold, Anne Mae Gaffney, Lawrence John Karas, Philip Jay Angevine, Chuen Yuan Yeh, Ruozhi Song
  • Publication number: 20100255985
    Abstract: A process for forming a catalyst useful for the production of an olefin from a hydrocarbon is disclosed. The process may include: admixing at least one of elemental metals and compounds to form a multi-metal composition comprising Mo, V, Nb, Te and at least one of Ni and Sb; adjusting the pH of the multi-metal composition by adding nitric acid; drying the acidified multi-metal composition; calcining the dried multi-metal composition; and grinding the calcined multi-metal composition. The ground multi-metal composition may then be sized or shaped to form a mixed metal oxide catalyst. Alternatively, the ground multi-metal composition may be treated with an acid, optionally annealed, and sized or shaped to form a mixed metal oxide catalyst.
    Type: Application
    Filed: April 2, 2009
    Publication date: October 7, 2010
    Applicant: Lummus Technology Inc.
    Inventors: Anne Mae Gaffney, Ruma Ghosh, Ruozhi Song, Chuen Yuan Yeh, Tadeusz Langner
  • Publication number: 20100255986
    Abstract: A catalyst for the oxidative dehydrogenation of a paraffin to form an olefin, the catalyst having a general formula MoaVbXcYdOn wherein: X=at least one of Nb and Ta; Y=at least one of Te, Sb, Ga, Pd, W, Bi and Al; a=1.0; b=0.05 to 1.0; c=0.001 to 1.0; d=0.001 to 1.0; and n is determined by the oxidation states of the other elements. The catalyst may have a selectivity to the olefin of at least 90 mole % at a paraffin conversion of at least 65%.
    Type: Application
    Filed: April 2, 2009
    Publication date: October 7, 2010
    Applicant: Lummus Technology Inc.
    Inventors: Anne Mae Gaffney, Ruma Ghosh, Ruozhi Song, Chuen Yuan Yeh, Tadeusz Langner
  • Publication number: 20100256432
    Abstract: A process for the oxidative dehydrogenation of ethane is disclosed. The process may include: contacting an ethane feed and an oxygen-containing gas in the presence of an oxidative dehydrogenation catalyst in an oxidative dehydrogenation reaction zone under conditions to oxidatively dehydrogenate at least a portion of the ethane to produce a product stream comprising ethylene, carbon oxides, water, and unreacted oxygen and ethane, wherein an oxygen concentration in the product stream is at least 0.1 mol %; contacting the product stream with an oxygen elimination catalyst in an oxygen elimination reaction zone to combust at least a portion of the oxygen; recovering from the oxygen elimination reaction zone an effluent having a reduced oxygen content; separating water from the effluent; separating carbon oxides and any non-condensable gas(es) from the ethylene and the unreacted ethane; and separating the ethylene from the unreacted ethane.
    Type: Application
    Filed: April 2, 2009
    Publication date: October 7, 2010
    Applicant: LUMMUS NOVOLENT GMBH/LUMMUS TECHNOLOGY INC.
    Inventors: Stephen Craig Arnold, Anne Mae Gaffney, Ruozhi Song, Chuen Yuan Yeh
  • Patent number: 7795469
    Abstract: An improved process for the production of unsaturated carboxylic acids and unsaturated nitriles from their corresponding C3 to C5 alkanes, or mixtures of C3 to C5 alkanes and alkenes, that involves oxidation in the presence of a supported Mo—V-based mixed metal oxide catalyst in a multi-stage reaction system which employs both separation of the oxidation product from one or more intermediate effluent streams, as well as feeding additional oxygen to reaction zones subsequent to the first reaction zone.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: September 14, 2010
    Assignee: Rohm and Haas Company
    Inventors: Anne Mae Gaffney, Scott Han
  • Publication number: 20100179359
    Abstract: A catalyst useful for the alkylation or transalkylation of aromatic compounds is disclosed. The catalyst is an acid-treated zeolitic catalyst produced by a process including contacting an acidic zeolitic catalyst comprising surface non-framework aluminum and framework aluminum with an organic dibasic acid at a catalyst to acid weight ratio in the range from about 2:1 to about 20:1 and at a temperature in the range from about 50° C. to about 100° C. to selectively remove at least a portion of the surface non-framework aluminum. The resulting catalyst may have a measured first-order rate constant, kcum, for the alkylation of benzene with propylene to form cumene, of at least 2.0 cm3/s g.
    Type: Application
    Filed: January 14, 2009
    Publication date: July 15, 2010
    Applicant: LUMMUS TECHNOLOGY INC.
    Inventors: Chuen Yuan Yeh, Ruozhi Song, Anne Mae Gaffney, Tadeusz Langner, Marshall J. Margolis
  • Patent number: 7718568
    Abstract: Hydrothermally synthesized catalysts comprising a mixed metal oxide are utilized to produce unsaturated carboxylic acids by the vapor phase oxidation of an alkane, or a mixture of an alkane and an alkene, in the presence thereof; or to produce unsaturated nitrites by the vapor phase oxidation of an alkane, or a mixture of an alkane and an alkene, and ammonia in the presence thereof.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: May 18, 2010
    Assignee: Rohm and Haas Company
    Inventors: Anne Mae Gaffney, Ruozhi Song
  • Publication number: 20090318743
    Abstract: Processes for using a combination of carbon dioxide and oxygen in the dehydrogenation of hydrocarbons are provided. A hydrocarbon feedstock, carbon dioxide and oxygen are fed to an oxidative dehydrogenation reactor system containing one or more catalysts that promote dehydrogenation of the hydrocarbon feedstock to produce a dehydrogenated hydrocarbon product. The processes of the present invention may be used, for example, to produce styrene monomer by dehydrogenation of ethylbenzene using carbon dioxide and oxygen as oxidants.
    Type: Application
    Filed: June 19, 2008
    Publication date: December 24, 2009
    Inventors: STEPHEN C. ARNOLD, Johannes Hendrik Koegler, Anne Mae Gaffney, Chuen Yuan Yeh, Ruozhi Song
  • Patent number: 7553986
    Abstract: An improved process for the production of unsaturated carboxylic acids and unsaturated nitrites from their corresponding C3 to C5 alkanes, or mixtures of C3 to C5 alkanes and alkenes, that involves a multi-stage reaction system which employs both separation of the oxidation product from one or more intermediate effluent streams, as well as feeding additional oxygen to reaction zones subsequent to the first reaction zone.
    Type: Grant
    Filed: November 19, 2004
    Date of Patent: June 30, 2009
    Assignee: Rohm and Haas Company
    Inventors: Leonard Edward Bogan, Jr., Fernando A. P. Cavalcanti, Nitin Chadda, Sanjay Chaturvedi, Anne Mae Gaffney, Scott Han, Peter D. Klugherz, Daniel Martenak, Mark Anthony Silvano, Elsie Mae Vickery, Donald L. Zolotorofe
  • Publication number: 20090036721
    Abstract: Methods are described for the simultaneous dehydrogenation of ethylbenzene and ethane in the presence of oxygen or carbon dioxide via a mixed metal oxide (MMO) catalyst or lithium-promoted sulfated zirconia catalyst to prepare styrene monomer from benzene and ethane. An alkylation unit produces ethyl benzene from ethylene and benzene, and an oxydehydrogenation unit produces styrene and ethylene from ethane, ethylbenzene and an oxidizing agent such as oxygen or carbon dioxide. The ethylene produced in the oxydehydrogenation unit is separated and used as feed to the alkylation unit.
    Type: Application
    Filed: July 31, 2007
    Publication date: February 5, 2009
    Inventors: Ruozhi Song, Anne Mae Gaffney, Chuen Yuan Yeh, Philip Jay Angevine
  • Patent number: 7396955
    Abstract: A mixed metal oxide, which may be an orthorhombic phase material, is improved as a catalyst for the production of unsaturated carboxylic acids, or unsaturated nitrites, from alkanes, or mixtures of alkanes and alkenes, by: contacting with a liquid contact member selected from the group consisting of organic acids, alcohols, inorganic acids and hydrogen peroxide to form a contact mixture; recovering insoluble material from the contact mixture; calcining the recovered insoluble material in a non-oxidizing atmosphere; admixing the calcined recovered insoluble material with (i) at least one promoter element or compound thereof and (ii) at least one solvent for the at least one promoter element or compound thereof; removing the at least one solvent to form a catalyst precursor; and calcining the catalyst precursor.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: July 8, 2008
    Assignee: Rohm and Haas Company
    Inventors: Anne Mae Gaffney, Michele Doreen Heffner, Ruozhi Song
  • Publication number: 20080154056
    Abstract: An improved process for the production of unsaturated carboxylic acids and unsaturated nitriles from their corresponding C3 to C5 alkanes, or mixtures of C3 to C5 alkanes and alkenes, that involves oxidation in the presence of a supported Mo-V-based mixed metal oxide catalyst in a multi-stage reaction system which employs both separation of the oxidation product from one or more intermediate effluent streams, as well as feeding additional oxygen to reaction zones subsequent to the first reaction zone.
    Type: Application
    Filed: November 16, 2007
    Publication date: June 26, 2008
    Inventors: Anne Mae Gaffney, Scott Han
  • Patent number: 7371883
    Abstract: An improved single-step catalytic vapor phase (amm)oxidation process for the conversion of one or more C2-C8 alkanes to one or more oxidation products, including unsaturated carboxylic acids and unsaturated nitriles, whereby a higher yield of the oxidation products is achieved.
    Type: Grant
    Filed: April 8, 2005
    Date of Patent: May 13, 2008
    Assignee: Rohm and Haas Company
    Inventors: Rebecca Fushimi, Anne Mae Gaffney, John T. Gleaves, Scott Han, Sergiy O. Shekhtman, Gregory S. Yablonsky
  • Patent number: 7361622
    Abstract: Alkenes, unsaturated saturated carboxylic acids, saturated carboxylic acids and their higher analogues are prepared cumulatively from corresponding alkanes utilizing using a multi-staged catalyst system and a multi-stage process which comprises steam cracking of alkanes to corresponding alkenes at flame temperatures and at short contact times in combination with one or more oxidation catalysts for catalytically converting the corresponding alkenes to further corresponding oxygenated products using short contact time reactor conditions.
    Type: Grant
    Filed: November 8, 2005
    Date of Patent: April 22, 2008
    Assignee: Rohm and Haas Company
    Inventors: Abraham Benderly, Anne Mae Gaffney, Mark Anthony Silvano
  • Patent number: 7348292
    Abstract: A mixed metal oxide, which may be an orthorhombic phase material, is improved as a catalyst for the production of unsaturated carboxylic acids, or unsaturated nitriles, from alkanes, or mixtures of alkanes and alkenes, by: contacting with a liquid contact member selected from the group consisting of organic acids, alcohols, inorganic acids and hydrogen peroxide to form a contact mixture; recovering insoluble material from the contact mixture; calcining the recovered insoluble material in a non-oxidizing atmosphere; admixing the calcined recovered insoluble material with (i) at least one promoter element or compound thereof and (ii) at least one solvent for the at least one promoter element or compound thereof; removing the at least one solvent to form a catalyst precursor; and calcining the catalyst precursor.
    Type: Grant
    Filed: November 14, 2005
    Date of Patent: March 25, 2008
    Assignee: Rohm and Haas Company
    Inventors: Anne Mae Gaffney, Michele Doreen Heffner, Ruozhi Song