Patents by Inventor Anne Testoni

Anne Testoni has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8636949
    Abstract: Improved electron beam sterilization apparatus and shielding techniques for use in are provided. A controller modulates an electron beam when sterilizing an interior to an object to ensure that adequate dose is received. Sterilization carousels are configured with input/discharge feeds to reduce the possibility of humans being exposed to dangerous levels of radiation. The system reduces the amount of shielding required to thereby lower cost of installation.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: January 28, 2014
    Assignee: Hitachi Zosen Corporation
    Inventors: Michael Lawrence Bufano, Steven Raymond Walther, Peter F. Hays, William Frederick Thomson, Arthur Wayne Sommerstein, Gerald Martin Friedman, P. Michael Fletcher, Stephen Whittaker Into, Anne Testoni, Brian S. Phillips
  • Publication number: 20130015365
    Abstract: Improved electron beam sterilization apparatus and shielding techniques for use in are provided. A controller modulates an electron beam when sterilizing an interior to an object to ensure that adequate dose is received. Sterilization carousels are configured with input/discharge feeds to reduce the possibility of humans being exposed to dangerous levels of radiation. The system reduces the amount of shielding required to thereby lower cost of installation.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 17, 2013
    Applicant: HITACHI ZOSEN CORPORATION
    Inventors: Michael Lawrence Bufano, Steven Raymond Walther, Peter F. Hays, William Frederick Thomson, Arthur Wayne Sommerstein, Gerald Martin Friedman, P. Michael Fletcher, Stephen Whittaker Into, Anne Testoni, Brian S. Phillips
  • Patent number: 8293173
    Abstract: Improved electron beam sterilization apparatus and shielding techniques for use in are provided. A controller modulates an electron beam when sterilizing an interior to an object to ensure that adequate dose is received. Sterilization carousels are configured with input/discharge feeds to reduce the possibility of humans being exposed to dangerous levels of radiation. The system reduces the amount of shielding required to thereby lower cost of installation.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: October 23, 2012
    Assignee: Hitachi Zosen Corporation
    Inventors: Michael Lawrence Bufano, Steven Raymond Walther, Peter F. Hays, William Frederick Thomson, Arthur Wayne Sommerstein, Gerald Martin Friedman, P. Michael Fletcher, Stephen Whittaker Into, Anne Testoni, Brian S. Phillips
  • Patent number: 8202440
    Abstract: Disclosed are methods and apparatus for etching a sample, such as a semiconductor device or wafer. In general terms, embodiments of the present invention allow dry etching of a material on a sample, such as a copper material, at room temperature using a reactive substance, such as a chorine based gas. For example, the mechanisms of the present invention allow precise etching of a copper material to produce fine feature patterns without heating up the whole device or substrate to an elevated temperature such as 50° C. and above. The etching is assisted by simultaneously scanning a charged particle beam, such as an electron beam, and a photon beam, such as a laser beam, over a same target area of the sample while the reactive substance is introduced near the same target area. The reactive substance, charged particle beam, and photon beam act in combination to etch the sample at the target area. For example, a copper layer may be etched using the mechanisms of the present invention.
    Type: Grant
    Filed: February 2, 2007
    Date of Patent: June 19, 2012
    Assignee: KLA-Tencor Corporation
    Inventors: Mehran Nasser-Ghodsi, Ying Wang, Harrison Chin, Anne Testoni, R. Chris Burns
  • Publication number: 20110012032
    Abstract: Improved electron beam sterilization apparatus and shielding techniques for use in are provided. A controller modulates an electron beam when sterilizing an interior to an object to ensure that adequate dose is received. Sterilization carousels are configured with input/discharge feeds to reduce the possibility of humans being exposed to dangerous levels of radiation. The system reduces the amount of shielding required to thereby lower cost of installation.
    Type: Application
    Filed: July 22, 2010
    Publication date: January 20, 2011
    Inventors: Michael Lawrence Bufano, Steven Raymond Walther, Peter F. Hays, William Frederick Thomson, Arthur Wayne Sommerstein, Gerald Martin Friedman, P. Michael Fletcher, Stephen Whittaker Into, Anne Testoni, Brian S. Phillips
  • Publication number: 20110012030
    Abstract: Improved electron beam sterilization apparatus and shielding techniques for use in are provided. A controller modulates an ebeam when sterilizing an interior to an object to ensure that adequate dose is received. Sterilization carousels are configured with input/discharge feeds to reduce the possibility of humans being exposed to dangerous levels of radiation. The system reduces the amount of shielding required to thereby lower cost of installation.
    Type: Application
    Filed: April 29, 2010
    Publication date: January 20, 2011
    Inventors: Michael Lawrence Bufano, Steven Raymond Walther, Peter F. Hays, William Frederick Thomson, Arthur Wayne Sommerstein, Gerald Martin Friedman, P. Michael Fletcher, Stephen Whittacker Into, Anne Testoni, Brian S. Phillips
  • Publication number: 20050260354
    Abstract: A method for plasma ion implantation of a substrate includes providing a plasma ion implantation system including a process chamber, a source for producing a plasma in the process chamber, a platen for holding the substrate in the process chamber, and a voltage source for accelerating ions from the plasma into the substrate, depositing on interior surfaces of the process chamber a fresh coating that is similar in composition to a deposited film that results from plasma ion implantation of the substrate, before depositing the fresh coating, cleaning interior surfaces of the process chamber by removing an old film using one or more activated cleaning precursors, plasma ion implantation of the substrate according to a plasma ion implantation process, and repeating the steps of cleaning interior surfaces of the process chamber and depositing a fresh coating following plasma ion implantation of one or more substrates.
    Type: Application
    Filed: May 20, 2004
    Publication date: November 24, 2005
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Vikram Singh, Atul Gupta, Harold Persing, Steven Walther, Anne Testoni
  • Patent number: 6924484
    Abstract: Disclosed are methods and apparatus for characterizing a potential void or voids by analyzing the X-ray count of one or more emitted X-ray species as emitted from an interconnect structure under test in response to a impinging beam, such as an electron beam, directed towards the sample surface. For example, this analysis may be used to determine whether the structure (e.g., a contact, line or via) has one or more void(s). It may also he used to help determine where the void(s) are with respect to the interconnect structure. It may also be used to help determine other characteristics of the void(s) with respect to the interconnect structure such as the shape(s) and size(s) of the void(s). The analysis may also be used to help initially determine whether the structure under test is so out of specification that it cannot then be determined whether the structure has a defect of a particular type. This analysis can be used to evaluate the process variation of wafers.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: August 2, 2005
    Assignee: KLA-Tencor Corporation
    Inventors: Ying Wang, Anne Testoni
  • Patent number: 6801596
    Abstract: The present invention provides a system for characterizing voids in test samples. An x-ray emission inducer scans a target such as a via on a test sample. A metallization or thin film layer emits x-rays as a result of the scan. The x-ray emission intensity can be measured and compared against a control measurement. The information obtained can be used to characterize a void in the scan target.
    Type: Grant
    Filed: November 21, 2001
    Date of Patent: October 5, 2004
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: Mehran Nasser-Ghodsi, Anne Testoni, Steve Oestreich
  • Patent number: 6777676
    Abstract: Disclosed are apparatus and methods for characterizing a potential defect of a semiconductor structure. A charged particle beam is scanned over a structure which has a potential defect. X-rays are detected from the scanned structure. The X-rays are in response to the charged particle beam being scanned over the structure. The potential defect of the scanned structure is characterized based on the detected X-rays. For example, it may be determined whether a potentially defective via has a SiO2 plug defect by comparing an X-ray count ratio of oxygen over silicon of the defective via with an X-ray count ratio of a known defect-free reference via. If the defective via has a relatively high ratio (more oxygen than silicon) as compared to the reference via, then it may be determined that a SiO2 plug defect is present within the defective via. Otherwise, the via may be defmed as having a different type of defect (e.g., not a SiO2 plug defect) or defined resulting in a “false” defect.
    Type: Grant
    Filed: November 21, 2002
    Date of Patent: August 17, 2004
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: Ying Wang, Yeishin Tung, Anne Testoni
  • Publication number: 20030063705
    Abstract: The present invention provides a system for characterizing voids in test samples. An x-ray emission inducer scans a target such as a via on a test sample. A metallization or thin film layer emits x-rays as a result of the scan. The x-ray emission intensity can be measured and compared against a control measurement. The information obtained can be used to characterize a void in the scan target.
    Type: Application
    Filed: November 21, 2001
    Publication date: April 3, 2003
    Applicant: KLA-Tencor Technologies Corporation
    Inventors: Mehran Nasser-Ghodsi, Anne Testoni, Steven Oestreich