Patents by Inventor Anne Verhulst

Anne Verhulst has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230003710
    Abstract: A method of operating a pore field-effect transistor (FET) sensor for detecting particles, wherein the pore FET sensor comprises a FET wherein a gate is controlled by a pore filled by a fluid, comprises: controlling a first voltage (Vcis) to set the FET in a subthreshold region; controlling a second voltage (Vtrans) to set a voltage difference between the first and second voltages (Vtrans) such that an effective difference in gate voltage experienced between a minimum and a maximum effective gate voltage during movement of a particle in the fluid is at least kT/q; and detecting a drain-source current in the FET, wherein the particle passing through the pore modulates the drain-source current for detecting presence of the particle.
    Type: Application
    Filed: June 27, 2022
    Publication date: January 5, 2023
    Inventors: Anne VERHULST, Pol VAN DORPE
  • Patent number: 9704992
    Abstract: A Tunnel Field-Effect Transistor comprising a source-channel-drain structure, the source-channel-drain structure comprising a source region doped with a dopant element having a first dopant type and a first doping concentration; a drain region doped with a dopant element having a second dopant type opposite compared to the first dopant type, and a second doping concentration, a channel region situated between the source region and the drain region and having an intrinsic doping concentration, or lowly doped concentration being lower than the doping concentration of the source and drain regions, a gate stack comprising a gate electrode on a gate dielectric layer, the gate stack covering at least part of the channel region and extending at the source side up to at least an interface between the source region and the channel region, a drain extension region in the channel region or on top thereof, the drain extension region being formed from a material suitable for creating, and having a length/thickness ratio s
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: July 11, 2017
    Assignees: IMEC VZW, Katholieke Universiteit Leuven
    Inventors: Anne Verhulst, Devin Verreck, AliReza Alian
  • Publication number: 20170170314
    Abstract: A Tunnel Field-Effect Transistor comprising a source-channel-drain structure, the source-channel-drain structure comprising a source region doped with a dopant element having a first dopant type and a first doping concentration; a drain region doped with a dopant element having a second dopant type opposite compared to the first dopant type, and a second doping concentration, a channel region situated between the source region and the drain region and having an intrinsic doping concentration, or lowly doped concentration being lower than the doping concentration of the source and drain regions, a gate stack comprising a gate electrode on a gate dielectric layer, the gate stack covering at least part of the channel region and extending at the source side up to at least an interface between the source region and the channel region, a drain extension region in the channel region or on top thereof, the drain extension region being formed from a material suitable for creating, and having a length/thickness ratio s
    Type: Application
    Filed: October 28, 2016
    Publication date: June 15, 2017
    Inventors: Anne Verhulst, Devin Verreck, AliReza Alian
  • Publication number: 20090266974
    Abstract: A wavelength-sensitive detector is provided that is based on elongate nanostructures, e.g. nanowires. The elongate nanostructures are parallel with respect to a common substrate and they are grouped in at least first and second units of a plurality of parallel elongate nanostructures. The elongate nanostructures are positioned in between a first and second electrode, the first and second electrodes lying respectively in a first and second plane substantially perpendicular to the plane of substrate, whereby all elongate nanostructures in a same photoconductor unit are contacted by the same two electrodes. Circuitry is added to read out electrical signals from the photoconductor units. The electronic density of states of the elongate nanostructures in each unit is different, because the material, of which the elongate nanostructures are made, is different or because the diameter of the elongate nanostructures is different.
    Type: Application
    Filed: June 26, 2006
    Publication date: October 29, 2009
    Inventors: Anne Verhulst, Wilfried Vandervorst