Patents by Inventor Anosh Daruwalla

Anosh Daruwalla has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230264946
    Abstract: There is provided a MEMS resonator comprising a support structure, a distributed cross-sectional resonator element with a particular eigenmode, at least one anchor coupling the distributed cross-sectional resonator element to the support structure, at least one drive electrode for actuating the particular eigenmode, and at least one sense electrode for sensing the particular eigenmode. The particular eigenmode is defined by a propagating series of modes, such as a plurality of Lamé modes. The MEMS resonator may be homogenously doped with one of N-type or P-type dopants, such that a second order temperature coefficient of frequency of the distributed cross-sectional resonator element is about zero. Additionally, the first order temperature coefficient of frequency may be reduced to about zero by modifying the ratio of elongation of the distributed cross-sectional resonator element or by modifying the material composition of the distributed cross-sectional resonator element.
    Type: Application
    Filed: February 9, 2023
    Publication date: August 24, 2023
    Inventors: Anosh Daruwalla, Siddharth Kumanduri
  • Publication number: 20230131902
    Abstract: An example silicon MEMS resonator device includes a support structure, a resonator element with at least one associated eigenmode of vibration, at least one anchor coupling the resonator element to the support structure, at least one driving electrode, and at least one sense electrode. The resonator element is homogeneously doped with N-type or P-type dopants to a doping concentration that causes a closely temperature-compensated mode in which (i) an absolute value of a first order temperature coefficient of frequency of the resonator element is reduced to a first value below a threshold value and (ii) an absolute value of a second order temperature coefficient of frequency of the resonator element is reduced to about zero. Further, a geometry of the resonator element is chosen such that the absolute value of the first order temperature coefficient of frequency is further reduced to a second value smaller than the first value.
    Type: Application
    Filed: October 26, 2022
    Publication date: April 27, 2023
    Inventors: Anosh Daruwalla, Reuble Mathew
  • Patent number: 11533042
    Abstract: Embodiments of the present disclosure relate generally to MEMS resonators. An exemplary MEMS resonator comprises a resonator beam having a length and a width. The length can be an integer multiple of the width. The integer multiple can be at least two. The resonator is configured to resonate at a frequency upon application of an input signal. The TCF of this resonator can be made close to zero, thus providing a temperature stable resonator. The exemplary MEMS resonator thereby has the advantages of high Q, low polarization voltage, low motional impedance and temperature stability of low frequency resonators while being able resonate at high frequencies of 30 MHz to 30 GHz.
    Type: Grant
    Filed: January 16, 2019
    Date of Patent: December 20, 2022
    Assignee: Georgia Tech Research Corporation
    Inventors: Anosh Daruwalla, Farrokh Ayazi
  • Patent number: 10921123
    Abstract: A bulk acoustic wave resonator apparatus includes a resonator member having an annulus shape, and at least one anchor structure coupling the resonator member to a substrate. A perimeter of the resonator member is at least partially defined by respective sidewalls that are slanted at an angle relative to a plane defined by a surface of the resonator member. The surface of the resonator member may be defined by a (100) crystal plane, and the angle of the respective sidewalls may be defined by a (111) crystal plane. Related fabrication methods are also discussed.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: February 16, 2021
    Assignee: Georgia Tech Research Corporation
    Inventors: Haoran Wen, Farrokh Ayazi, Anosh Daruwalla
  • Publication number: 20190222196
    Abstract: Embodiments of the present disclosure relate generally to MEMS resonators. An exemplary MEMS resonator comprises a resonator beam having a length and a width. The length can be an integer multiple of the width. The integer multiple can be at least two. The resonator is configured to resonate at a frequency upon application of an input signal. The TCF of this resonator can be made close to zero, thus providing a temperature stable resonator. The exemplary MEMS resonator thereby has the advantages of high Q, low polarization voltage, low motional impedance and temperature stability of low frequency resonators while being able resonate at high frequencies of 30 MHz to 30 GHz.
    Type: Application
    Filed: January 16, 2019
    Publication date: July 18, 2019
    Inventors: Anosh Daruwalla, Farrokh Ayazi
  • Publication number: 20190137271
    Abstract: A bulk acoustic wave resonator apparatus includes a resonator member having an annulus shape, and at least one anchor structure coupling the resonator member to a substrate. A perimeter of the resonator member is at least partially defined by respective sidewalls that are slanted at an angle relative to a plane defined by a surface of the resonator member. The surface of the resonator member may be defined by a (100) crystal plane, and the angle of the respective sidewalls may be defined by a (111) crystal plane. Related fabrication methods are also discussed.
    Type: Application
    Filed: June 7, 2017
    Publication date: May 9, 2019
    Inventors: Haoran Wen, Farrokh Ayazi, Anosh Daruwalla