Patents by Inventor Ansh KAPIL

Ansh KAPIL has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250177550
    Abstract: A method for predicting the efficacy of an antibody drug conjugate (ADC) therapy involves determining the mean optical density (OD) of membrane and optionally cytoplasm staining of each cancer cell in a whole slide image. A diagnostic antibody to which a dye is linked targets the same folate receptor alpha protein as does the ADC antibody. Statistical operations are performed on the OD of staining, such as computing the median, absolute deviation, difference in OD of membrane and cytoplasm staining, percentage of cells a minimum OD, or the sum of minimally stained cells plus insufficiently stained cells near stained cells. For example, a zero, high or low ADC dosage is recommended based on whether median OD falls below, between or above two OD thresholds, respectively. The upper and lower OD thresholds are correlated to responses of training patients treated with the ADC and whose stained cancer tissue has been analyzed.
    Type: Application
    Filed: March 9, 2023
    Publication date: June 5, 2025
    Inventors: Nicholas DURHAM, Jorge ZERON-MEDINA CUAIRAN, Ansh KAPIL, Gunter SCHMIDT, Jixin WANG
  • Publication number: 20240426826
    Abstract: A method for predicting how a cancer patient will respond to an antibody drug conjugate (ADC) therapy involves computing a predictive response score based on single-cell ADC scores for each cancer cell. The ADC includes an ADC payload and an ADC antibody that targets a protein on each cancer cell, wherein the protein is human epidermal growth factor receptor 2 (HER2). A tissue sample is immunohistochemically stained using a dye linked to a diagnostic antibody that binds to the protein on cancer cells in the tissue sample. Cancer cells in a digital image of the tissue are detected. For each cancer cell, a single-cell ADC score is computed based on the staining intensities of the dye in the membrane and/or cytoplasm of the cancer cell and/or in the membranes and cytoplasms of neighboring cancer cells. The response of the cancer patient to the ADC therapy is predicted by aggregating all single-cell ADC scores of the tissue sample using a statistical operation.
    Type: Application
    Filed: September 11, 2021
    Publication date: December 26, 2024
    Inventors: Guenter Schmidt, Nicolas Brieu, Andreas Spitzmueller, Ansh Kapil
  • Publication number: 20240302348
    Abstract: The present invention relates to a method for predicting how a cancer patient will respond to an antibody drug conjugate (ADC) therapy involving computing a predictive response score based on single-cell ADC scores for each cancer cell. For each cancer cell, a single-cell ADC score is computed based on the staining intensities of the dye in the membrane and cytoplasm of the cancer cell and in the membranes and cytoplasms of neighboring cancer cells. The present invention also relates to predicting a response of a cancer patient to ADC therapy by aggregating all single-cell ADC scores of the tissue sample using a statistical operation, and the subsequent treatment of cancer with related antibody-drug conjugates.
    Type: Application
    Filed: September 13, 2021
    Publication date: September 12, 2024
    Inventors: Guenter Schmidt, Nicolas Brieu, Andreas Spitzmueller, Ansh Kapil, Tze Tan, Philipp Wortmann
  • Patent number: 11748981
    Abstract: A method for indicating how a cancer patient will respond to a predetermined therapy relies on spatial statistical analysis of classes of cell centers in a digital image of tissue of the cancer patient. The cell centers are detected in the image of stained tissue of the cancer patient. For each cell center, an image patch that includes the cell center is extracted from the image. A feature vector is generated based on each image patch using a convolutional neural network. A class is assigned to each cell center based on the feature vector associated with each cell center. A score is computed for the image of tissue by performing spatial statistical analysis based on classes of the cell centers. The score indicates how the cancer patient will respond to the predetermined therapy. The predetermined therapy is recommended to the patient if the score is larger than a predetermined threshold.
    Type: Grant
    Filed: April 27, 2022
    Date of Patent: September 5, 2023
    Assignee: AstraZeneca Computational Pathology GmbH
    Inventors: Guenter Schmidt, Nicolas Brieu, Ansh Kapil, Jan Martin Lesniak
  • Publication number: 20220254020
    Abstract: A method for indicating how a cancer patient will respond to a predetermined therapy relies on spatial statistical analysis of classes of cell centers in a digital image of tissue of the cancer patient. The cell centers are detected in the image of stained tissue of the cancer patient. For each cell center, an image patch that includes the cell center is extracted from the image. A feature vector is generated based on each image patch using a convolutional neural network. A class is assigned to each cell center based on the feature vector associated with each cell center. A score is computed for the image of tissue by performing spatial statistical analysis based on classes of the cell centers. The score indicates how the cancer patient will respond to the predetermined therapy. The predetermined therapy is recommended to the patient if the score is larger than a predetermined threshold.
    Type: Application
    Filed: April 27, 2022
    Publication date: August 11, 2022
    Inventors: Guenter Schmidt, Nicolas Brieu, Ansh Kapil, Jan Martin Lesniak
  • Patent number: 11348231
    Abstract: A method for indicating how a cancer patient will respond to a predetermined therapy relies on spatial statistical analysis of classes of cell centers in a digital image of tissue of the cancer patient. The cell centers are detected in the image of stained tissue of the cancer patient. For each cell center, an image patch that includes the cell center is extracted from the image. A feature vector is generated based on each image patch using a convolutional neural network. A class is assigned to each cell center based on the feature vector associated with each cell center. A score is computed for the image of tissue by performing spatial statistical analysis based on classes of the cell centers. The score indicates how the cancer patient will respond to the predetermined therapy. The predetermined therapy is recommended to the patient if the score is larger than a predetermined threshold.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: May 31, 2022
    Assignee: AstraZeneca Computational Pathology GmbH
    Inventors: Guenter Schmidt, Nicolas Brieu, Ansh Kapil, Jan Martin Lesniak
  • Patent number: 11030744
    Abstract: A score of a histopathological diagnosis of cancer is generated by loading an image patch of an image into a processing unit, determining how many pixels of the image patch belong to a first tissue, processing additional image patches cropped from the image to determine how many pixels of each image patch belong to the first tissue, computing the score and displaying it along with the image on a graphical user interface. The image patch is cropped from the image of a slice of tissue that has been immunohistochemically stained using a diagnostic antibody. The first tissue comprises tumor epithelial cells that are positively stained by the diagnostic antibody. Determining how many pixels belong to the first tissue is performed by processing the image patch using a convolutional neural network. The score of the histopathological diagnosis is computed based on the total number of pixels belonging to the first tissue.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: June 8, 2021
    Assignee: AstraZeneca Computational Pathology GmbH
    Inventors: Ansh Kapil, Nicolas Brieu
  • Patent number: 10915558
    Abstract: According to some embodiments, a system and method are provided to classify an anomaly. The method comprises receiving, from an anomaly detection system, time-series data that comprises one or more anomalies. The time-series data is grouped into a plurality of groups based on a scale range. For each group of the plurality of groups, statistical features are extracted from the time-series data. The extracted statistical features associated with the plurality of groups are combined and the one or more anomalies are classified based on the combined extracted statistical features.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: February 9, 2021
    Assignee: General Electric Company
    Inventors: Sundeep R Patil, Ansh Kapil, Oliver Baptista
  • Publication number: 20200184641
    Abstract: A method for indicating how a cancer patient will respond to a predetermined therapy relies on spatial statistical analysis of classes of cell centers in a digital image of tissue of the cancer patient. The cell centers are detected in the image of stained tissue of the cancer patient. For each cell center, an image patch that includes the cell center is extracted from the image. A feature vector is generated based on each image patch using a convolutional neural network. A class is assigned to each cell center based on the feature vector associated with each cell center. A score is computed for the image of tissue by performing spatial statistical analysis based on classes of the cell centers. The score indicates how the cancer patient will respond to the predetermined therapy. The predetermined therapy is recommended to the patient if the score is larger than a predetermined threshold.
    Type: Application
    Filed: December 6, 2019
    Publication date: June 11, 2020
    Inventors: Guenter Schmidt, Nicolas Brieu, Ansh Kapil, Jan Martin Lesniak
  • Publication number: 20190392580
    Abstract: A score of a histopathological diagnosis of cancer is generated by loading an image patch of an image into a processing unit, determining how many pixels of the image patch belong to a first tissue, processing additional image patches cropped from the image to determine how many pixels of each image patch belong to the first tissue, computing the score and displaying it along with the image on a graphical user interface. The image patch is cropped from the image of a slice of tissue that has been immunohistochemically stained using a diagnostic antibody. The first tissue comprises tumor epithelial cells that are positively stained by the diagnostic antibody. Determining how many pixels belong to the first tissue is performed by processing the image patch using a convolutional neural network. The score of the histopathological diagnosis is computed based on the total number of pixels belonging to the first tissue.
    Type: Application
    Filed: June 25, 2019
    Publication date: December 26, 2019
    Inventors: Ansh Kapil, Nicolas Brieu
  • Patent number: 10372120
    Abstract: According to some embodiments, a system and method are provided to receive a first plurality of data from a machine associated with a first time period. A normal operation of the machine is automatically determined based on the first plurality of data. A second plurality of data may be received from the machine associated with a second time period. An anomaly in the second plurality of data is determined.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: August 6, 2019
    Assignee: General Electric Company
    Inventors: Sundeep R Patil, Ansh Kapil, Alexander Sagel, Lutter Michael, Oliver Baptista, Martin Kleinsteuber
  • Publication number: 20180210942
    Abstract: According to some embodiments, a system and method are provided to classify an anomaly. The method comprises receiving, from an anomaly detection system, time-series data that comprises one or more anomalies. The time-series data is grouped into a plurality of groups based on a scale range. For each group of the plurality of groups, statistical features are extracted from the time-series data. The extracted statistical features associated with the plurality of groups are combined and the one or more anomalies are classified based on the combined extracted statistical features.
    Type: Application
    Filed: January 25, 2017
    Publication date: July 26, 2018
    Inventors: Sundeep R. PATIL, Ansh KAPIL, Oliver BAPTISTA
  • Publication number: 20180100784
    Abstract: According to some embodiments, a system and method are provided to receive a first plurality of data from a machine associated with a first time period. A normal operation of the machine is automatically determined based on the first plurality of data. A second plurality of data may be received from the machine associated with a second time period. An anomaly in the second plurality of data is determined.
    Type: Application
    Filed: October 6, 2016
    Publication date: April 12, 2018
    Inventors: Sundeep R. PATIL, Ansh KAPIL, Alexander SAGEL, Lutter MICHAEL, Oliver BAPTISTA, Martin KLEINSTEUBER
  • Publication number: 20180096243
    Abstract: The present embodiments relate to a system and method associated with anomaly classification. The method comprises receiving a plurality of time-series data from one or more sensors associated with a machine. The time-series data may be automatically passed through a convolutional neural network to determine reduced dimension data. An anomaly based on classifying the reduced dimension data may be automatically determined. In a case that the anomaly is an unknown anomaly, the determined anomaly may be labeled and the determined anomaly and its associated label may be stored in an anomaly training database.
    Type: Application
    Filed: September 30, 2016
    Publication date: April 5, 2018
    Inventors: Sundeep R PATIL, Ansh KAPIL, Oliver BAPTISTA