Patents by Inventor Anshu A. Pradhan

Anshu A. Pradhan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190025662
    Abstract: Aspects of this disclosure concern controllers and control methods for applying a drive voltage to bus bars of optically switchable devices such as electrochromic devices. Such devices are often provided on windows such as architectural glass. In certain embodiments, the applied drive voltage is controlled in a manner that efficiently drives an optical transition over the entire surface of the electrochromic device. The drive voltage is controlled to account for differences in effective voltage experienced in regions between the bus bars and regions proximate the bus bars. Regions near the bus bars experience the highest effective voltage. In some cases, feedback may be used to monitor an optical transition. In these or other cases, a group of optically switchable devices may transition together over a particular duration to achieve approximately uniform tint states over time during the transition.
    Type: Application
    Filed: September 14, 2018
    Publication date: January 24, 2019
    Inventors: Gordon Jack, Sridhar K. Kailasam, Stephen C. Brown, Anshu A. Pradhan
  • Patent number: 10185197
    Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically-insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer. The interfacial region contains an ion conducting electronically-insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: January 22, 2019
    Assignee: View, Inc.
    Inventors: Anshu A. Pradhan, Robert T. Rozbicki
  • Publication number: 20190011793
    Abstract: This disclosure provides configurations, methods of use, and methods of fabrication for a bus bar of an optically switchable device. In one aspect, an apparatus includes a substrate and an optically switchable device disposed on a surface of the substrate. The optically switchable device has a perimeter with at least one corner including a first side, a second side, and a first vertex joining the first side and the second side. A first bus bar and a second bus bar are affixed to the optically switchable device and configured to deliver current and/or voltage for driving switching of the device. The first bus bar is proximate to the corner and includes a first arm and a second arm having a configuration that substantially follows the shape of the first side, the first vertex, and the second side of the corner.
    Type: Application
    Filed: July 11, 2018
    Publication date: January 10, 2019
    Applicant: View, Inc.
    Inventors: Gordon Jack, Anshu Pradhan, Kaustubh Nadkarni
  • Patent number: 10175549
    Abstract: This disclosure provides connectors for smart windows. A smart window may incorporate an optically switchable pane. In one aspect, a window unit includes an insulated glass unit including an optically switchable pane. A wire assembly may be attached to the edge of the insulated glass unit and may include wires in electrical communication with electrodes of the optically switchable pane. A floating connector may be attached to a distal end of the wire assembly. The floating connector may include a flange and a nose, with two holes in the flange for affixing the floating connector to a first frame. The nose may include a terminal face that present two exposed contacts of opposite polarity. Pre-wired spacers improve fabrication efficiency and seal integrity of insulated glass units. Electrical connection systems include those embedded in the secondary seal of the insulated glass unit.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: January 8, 2019
    Assignee: View, Inc.
    Inventors: Stephen C. Brown, Dhairya Shrivastava, David Walter Groechel, Anshu A. Pradhan, Gordon Jack, Disha Mehtani, Robert T. Rozbicki
  • Publication number: 20180341163
    Abstract: Aspects of this disclosure concern controllers and control methods for applying a drive voltage to bus bars of optically switchable devices such as electrochromic devices. Such devices are often provided on windows such as architectural glass. In certain embodiments, the applied drive voltage is controlled in a manner that efficiently drives an optical transition over the entire surface of the electrochromic device. The drive voltage is controlled to account for differences in effective voltage experienced in regions between the bus bars and regions proximate the bus bars. Regions near the bus bars experience the highest effective voltage.
    Type: Application
    Filed: August 6, 2018
    Publication date: November 29, 2018
    Inventors: Gordon Jack, Anshu Pradhan
  • Patent number: 10125419
    Abstract: Described are methods of fabricating lithium sputter targets, lithium sputter targets, associated handling apparatus, and sputter methods including lithium targets. Various embodiments address adhesion of the lithium metal target to a support structure, avoiding and/or removing passivating coatings formed on the lithium target, uniformity of the lithium target as well as efficient cooling of lithium during sputtering. Target configurations used to compensate for non-uniformities in sputter plasma are described. Modular format lithium tiles and methods of fabrication are described. Rotary lithium sputter targets are also described.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: November 13, 2018
    Assignee: View, Inc.
    Inventors: Martin John Neumann, Que Anh Song Nguyen, Anshu A. Pradhan, Robert T. Rozbicki, Dhairya Shrivastava, Jason Satern, Todd Martin
  • Patent number: 10120258
    Abstract: Aspects of this disclosure concern controllers and control methods for applying a drive voltage to bus bars of optically switchable devices such as electrochromic devices. Such devices are often provided on windows such as architectural glass. In certain embodiments, the applied drive voltage is controlled in a manner that efficiently drives an optical transition over the entire surface of the electrochromic device. The drive voltage is controlled to account for differences in effective voltage experienced in regions between the bus bars and regions proximate the bus bars. Regions near the bus bars experience the highest effective voltage.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: November 6, 2018
    Assignee: View, Inc.
    Inventors: Gordon Jack, Anshu Pradhan
  • Patent number: 10088729
    Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer, which are in direct contact with one another. The interfacial region contains an ion conducting electronically insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices. In addition to the improved electrochromic devices and methods for fabrication, integrated deposition systems for forming such improved devices are also disclosed.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: October 2, 2018
    Assignee: View, Inc.
    Inventors: Zhongchun Wang, Anshu Pradhan, Robert Rozbicki
  • Publication number: 20180267380
    Abstract: Onboard EC window controllers are described. The controllers are configured in close proximity to the EC window, for example, within the IGU. The controller may be part of a window assembly, which includes an IGU having one or more EC panes, and thus does not have to be matched with the EC window, and installed, in the field. The window controllers described herein have a number of advantages because they are matched to the IGU containing one or more EC devices and their proximity to the EC panes of the window overcomes a number of problems associated with conventional controller configurations.
    Type: Application
    Filed: May 11, 2018
    Publication date: September 20, 2018
    Inventors: Dhairya Shrivastava, Anshu A. Pradhan, Stephen C. Brown, David Walter Groechel, Robert T. Rozbicki
  • Publication number: 20180259822
    Abstract: Thin-film devices, for example electrochromic devices for windows, and methods of manufacturing are described. Particular focus is given to methods of patterning optical devices. Various edge deletion and isolation scribes are performed, for example, to ensure the optical device has appropriate isolation from any edge defects. Methods described herein apply to any thin-film device having one or more material layers sandwiched between two thin film electrical conductor layers. The described methods create novel optical device configurations.
    Type: Application
    Filed: December 24, 2015
    Publication date: September 13, 2018
    Inventors: Abhishek Anant Dixit, Todd William Martin, Anshu A. Pradhan, Fabian Strong, Robert T. Rozbicki
  • Patent number: 10054833
    Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: August 21, 2018
    Assignee: View, Inc.
    Inventors: Sridhar Karthik Kailasam, Robin Friedman, Anshu A. Pradhan, Robert T. Rozbicki
  • Publication number: 20180231858
    Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition.
    Type: Application
    Filed: April 13, 2018
    Publication date: August 16, 2018
    Inventors: Sridhar Karthik Kailasam, Robin Friedman, Anshu A. Pradhan, Robert T. Rozbicki
  • Publication number: 20180210307
    Abstract: Methods of manufacturing electrochromic windows are described. Insulated glass units (IGU's) are protected, e.g. during handling and shipping, by a protective bumper. The bumper can be custom made using IGU dimension data received from the IGU fabrication tool. The bumper may be made of environmentally friendly materials. Laser isolation configurations and related methods of patterning and/or configuring an electrochromic device on a substrate are described. Edge deletion is used to ensure a good seal between spacer and glass in an IGU and thus better protection of an electrochromic device sealed in the IGU. Configurations for protecting the electrochromic device edge in the primary seal and maximizing viewable area in an electrochromic pane of an IGU are also described.
    Type: Application
    Filed: March 23, 2018
    Publication date: July 26, 2018
    Inventors: Ronald M. Parker, Robert T. Rozbicki, Yashraj Bhatnagar, Abhishek Anant Dixit, Anshu A. Pradhan
  • Publication number: 20180203320
    Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition.
    Type: Application
    Filed: March 8, 2018
    Publication date: July 19, 2018
    Inventors: Sridhar Karthik Kailasam, Robin Friedman, Anshu A. Pradhan, Robert T. Rozbicki
  • Patent number: 10001691
    Abstract: Onboard EC window controllers are described. The controllers are configured in close proximity to the EC window, for example, within the IGU. The controller may be part of a window assembly, which includes an IGU having one or more EC panes, and thus does not have to be matched with the EC window, and installed, in the field. The window controllers described herein have a number of advantages because they are matched to the IGU containing one or more EC devices and their proximity to the EC panes of the window overcomes a number of problems associated with conventional controller configurations.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: June 19, 2018
    Assignee: View, Inc.
    Inventors: Dhairya Shrivastava, Anshu A. Pradhan, Stephen C. Brown, David Walter Groechel, Robert T. Rozbicki
  • Patent number: 9995985
    Abstract: Methods of manufacturing electrochromic windows are described. Insulated glass units (IGU's) are protected, e.g. during handling and shipping, by a protective bumper. The bumper can be custom made using IGU dimension data received from the IGU fabrication tool. The bumper may be made of environmentally friendly materials. Laser isolation configurations and related methods of patterning and/or configuring an electrochromic device on a substrate are described. Edge deletion is used to ensure a good seal between spacer and glass in an IGU and thus better protection of an electrochromic device sealed in the IGU. Configurations for protecting the electrochromic device edge in the primary seal and maximizing viewable area in an electrochromic pane of an IGU are also described.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: June 12, 2018
    Assignee: View, Inc.
    Inventors: Ronald M. Parker, Robert T. Rozbicki, Yashraj Bhatnagar, Abhishek Anant Dixit, Anshu A. Pradhan
  • Publication number: 20180143502
    Abstract: Controllers and control methods apply a drive voltage to bus bars of a thin film optically switchable device. The applied drive voltage is provided at a level that drives a transition over the entire surface of the optically switchable device but does not damage or degrade the device. This applied voltage produces an effective voltage at all locations on the face of the device that is within a bracketed range. The upper bound of this range is associated with a voltage safely below the level at which the device may experience damage or degradation impacting its performance in the short term or the long term. At the lower boundary of this range is an effective voltage at which the transition between optical states of the device occurs relatively rapidly. The level of voltage applied between the bus bars is significantly greater than the maximum value of the effective voltage within the bracketed range.
    Type: Application
    Filed: January 19, 2018
    Publication date: May 24, 2018
    Inventors: Anshu A. Pradhan, Disha Mehtani, Gordon Jack
  • Patent number: 9958750
    Abstract: Methods of manufacturing electrochromic windows are described. Insulated glass units (IGU's) are protected, e.g. during handling and shipping, by a protective bumper. The bumper can be custom made using IGU dimension data received from the IGU fabrication tool. The bumper may be made of environmentally friendly materials. Laser isolation configurations and related methods of patterning and/or configuring an electrochromic device on a substrate are described. Edge deletion is used to ensure a good seal between spacer and glass in an IGU and thus better protection of an electrochromic device sealed in the IGU. Configurations for protecting the electrochromic device edge in the primary seal and maximizing viewable area in an electrochromic pane of an IGU are also described.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: May 1, 2018
    Assignee: View, Inc.
    Inventors: Ronald M. Parker, Robert T. Rozbicki, Yashraj Bhatnagar, Abhishek Anant Dixit, Anshu A. Pradhan
  • Patent number: 9946138
    Abstract: Onboard EC window controllers are described. The controllers are configured in close proximity to the EC window, for example, within the IGU. The controller may be part of a window assembly, which includes an IGU having one or more EC panes, and thus does not have to be matched with the EC window, and installed, in the field. The window controllers described herein have a number of advantages because they are matched to the IGU containing one or more EC devices and their proximity to the EC panes of the window overcomes a number of problems associated with conventional controller configurations.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: April 17, 2018
    Assignee: View, Inc.
    Inventors: Dhairya Shrivastava, Anshu A. Pradhan, Stephen C. Brown, David Walter Groechel, Robert T. Rozbicki
  • Publication number: 20180095337
    Abstract: Electrochromic devices comprise first and second conductors, wherein at least one of the first and second conductors is a multi-layered conductor. The electrochromic devices further comprise an electrochromic stack between the conductors adjacent to a substrate. The at least one multi-layered conductor comprises a metal layer sandwiched between a first non-metal layer and a second non-metal layer such that the metal layer does not contact the electrochromic stack.
    Type: Application
    Filed: March 18, 2016
    Publication date: April 5, 2018
    Applicant: View, Inc.
    Inventors: Robert T. Rozbicki, Anshu A. Pradhan, Sridhar Karthik Kailasam, Robin Friedman, Gordon E. Jack, Dane Thomas Gillaspie