Patents by Inventor Anshu Pandey

Anshu Pandey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11217662
    Abstract: Present subject matter provides a semiconductor nanocrystal comprises a core and a shell. The core is fabricated from a first semiconductor. The shell is fabricated from a second semiconductor. The optical cross section of the semiconductor nanocrystal is in a range of 10?17 cm2-10?12 cm2 in a 2-3 eV region. The core is less than 2 nanometers from an outer surface of the shell in at least one region of the semiconductor nanocrystal. Present subject matter also provides method for preparation of the semiconductor nanocrystals and method for photosynthesis of organic compounds.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: January 4, 2022
    Assignee: INDIAN INSTITUTE OF SCIENCE
    Inventors: Anshu Pandey, Biswajit Bhattacharyya, Guru Pratheep Rajasekar, Amit Kumar Simlandy
  • Publication number: 20200402686
    Abstract: The present invention provides a superconducting block, comprising, a pair of cores with materials that are electrically conductive in their normal states. The pair of cores are embedded in the shell with an intervening centroidal distance, with a material that is electrically conductive in its normal state. The embedded pair of cores and the shell are configured to be superconductive. The present invention also provides a superconducting nanocrystal with at least the superconducting block. The present invention also provides a superconductive device with at least the superconducting block and the superconducting nanocrystal. The present invention further provides a process for fabricating the superconducting block and superconducting crystal. The present invention provides superconductors (superconducting block, superconducting nanocrystals) that can be employed to attain superconductivity at high temperatures, corresponding to temperatures existing in the terrestrial ambient and even higher.
    Type: Application
    Filed: March 11, 2019
    Publication date: December 24, 2020
    Applicant: INDIAN INSTITUTE OF SCIENCE
    Inventors: Anshu PANDEY, Dev Kumar THAPA, Subham Kumar SAHA
  • Publication number: 20200203472
    Abstract: Present subject matter provides a semiconductor nanocrystal comprises a core and a shell. The core is fabricated from a first semiconductor. The shell is fabricated from a second semiconductor. The optical cross section of the semiconductor nanocrystal is in a range of 10?17 cm2-10?12 cm2 in a 2-3 eV region. The core is less than 2 nanometers from an outer surface of the shell in at least one region of the semiconductor nanocrystal. Present subject matter also provides method for preparation of the semiconductor nanocrystals and method for photosynthesis of organic compounds.
    Type: Application
    Filed: April 27, 2018
    Publication date: June 25, 2020
    Inventors: Anshu Pandey, Biswajit Bhattacharyya, Guru Pratheep Rajasekar, Amit Kumar Simlandy
  • Publication number: 20140275544
    Abstract: Embodiments of linkers for binding semiconductor quantum dots (QDs) to metal oxides are disclosed. The linkers have a general formula F1-A-(F2)z wherein F1 is —COOH, —COO?, —PO3H2, —PO3H?, —B(OH)2, —BO2H?, —SO3H, —SO3?, —NH2, —SH, or —S?; A is aryl, heteroaryl, aliphatic, or heteroaliphatic; and z?1 and each F2 independently is —PO3H2, —PO3H?, —B(OH)2, —BO2H?, —SO3H, —SO3?, or z?2 and each F2 independently is —COOH, —COO?, —PO3H2, —PO3H?, —B(OH)2, —BO2H?, —SO3H, or —SO3?, or z?2 and (F2)z collectively is an oxysilane moiety comprising z lower alkoxy groups bound to silicon. Methods of binding QDs to metal oxides with the disclosed linkers also are disclosed, as well as devices including the QD-functionalized metal oxides.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Inventors: Hunter McDaniel, Alexey Y. Koposov, Anshu Pandey, Nobuhiro Fuke, Victor I. Klimov