Patents by Inventor Anshu Pradhan

Anshu Pradhan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200041860
    Abstract: Bus bar configurations and fabrication methods for non-rectangular shaped (e.g., triangular, trapezoidal, circular, pentagonal, hexagonal, arched, etc.) optical devices.
    Type: Application
    Filed: September 23, 2019
    Publication date: February 6, 2020
    Inventors: Abhishek Anant Dixit, Todd Martin, Anshu A. Pradhan, Gordon Jack, Yashraj Bhatnagar
  • Patent number: 10551711
    Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: February 4, 2020
    Assignee: View, Inc.
    Inventors: Mark Kozlowski, Eric W. Kurman, Zhongchun Wang, Mike Scobey, Jeremy A. Dixon, Anshu A. Pradhan, Robert T. Rozbicki
  • Patent number: 10534237
    Abstract: Methods, apparatus, and systems for mitigating pinhole defects in optical devices such as electrochromic windows. One method mitigates a pinhole defect in an electrochromic device by identifying the site of the pinhole defect and obscuring the pinhole to make it less visually discernible. In some cases, the pinhole defect may be the result of mitigating a short-related defect.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: January 14, 2020
    Assignee: View, Inc.
    Inventors: Robin Friedman, Sridhar Karthik Kailasam, Rao Mulpuri, Ronald M. Parker, Ronald A. Powell, Anshu A. Pradhan, Robert T. Rozbicki, Vinod Khosla
  • Patent number: 10520785
    Abstract: Controllers and control methods apply a drive voltage to bus bars of a thin film optically switchable device. The applied drive voltage is provided at a level that drives a transition over the entire surface of the optically switchable device but does not damage or degrade the device. This applied voltage produces an effective voltage at all locations on the face of the device that is within a bracketed range. The upper bound of this range is associated with a voltage safely below the level at which the device may experience damage or degradation impacting its performance in the short term or the long term. At the lower boundary of this range is an effective voltage at which the transition between optical states of the device occurs relatively rapidly. The level of voltage applied between the bus bars is significantly greater than the maximum value of the effective voltage within the bracketed range.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: December 31, 2019
    Assignee: View, Inc.
    Inventors: Anshu A. Pradhan, Disha Mehtani, Gordon Jack
  • Patent number: 10520783
    Abstract: Methods are provided for fabricating electrochromic devices that mitigate formation of short circuits under a top bus bar without predetermining where top bus bars will be applied on the device. Devices fabricated using such methods may be deactivated under the top bus bar, or may include active material under the top bus bar. Methods of fabricating devices with active material under a top bus bar include depositing a modified top bus bar, fabricating self-healing layers in the electrochromic device, and modifying a top transparent conductive layer of the device prior to applying bus bars.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: December 31, 2019
    Assignee: View, Inc.
    Inventors: Sridhar Karthik Kailasam, Dhairya Shrivastava, Zhiwei Cai, Robert T. Rozbicki, Dane Thomas Gillaspie, Todd William Martin, Anshu A. Pradhan, Ronald M. Parker
  • Patent number: 10514582
    Abstract: Aspects of this disclosure concern controllers and control methods for applying a drive voltage to bus bars of optically switchable devices such as electrochromic devices. Such devices are often provided on windows such as architectural glass. In certain embodiments, the applied drive voltage is controlled in a manner that efficiently drives an optical transition over the entire surface of the electrochromic device. The drive voltage is controlled to account for differences in effective voltage experienced in regions between the bus bars and regions proximate the bus bars. Regions near the bus bars experience the highest effective voltage. In some cases, feedback may be used to monitor an optical transition. In these or other cases, a group of optically switchable devices may transition together over a particular duration to achieve approximately uniform tint states over time during the transition.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: December 24, 2019
    Assignee: View, Inc.
    Inventors: Gordon Jack, Sridhar K. Kailasam, Stephen C. Brown, Anshu A. Pradhan
  • Patent number: 10503039
    Abstract: Aspects of this disclosure concern controllers and control methods for applying a drive voltage to bus bars of optically switchable devices such as electrochromic devices. Such devices are often provided on windows such as architectural glass. In certain embodiments, the applied drive voltage is controlled in a manner that efficiently drives an optical transition over the entire surface of the electrochromic device. The drive voltage is controlled to account for differences in effective voltage experienced in regions between the bus bars and regions proximate the bus bars. Regions near the bus bars experience the highest effective voltage. In some cases, feedback may be used to monitor an optical transition. In these or other cases, a group of optically switchable devices may transition together over a particular duration to achieve approximately uniform tint states over time during the transition.
    Type: Grant
    Filed: October 5, 2016
    Date of Patent: December 10, 2019
    Assignee: View, Inc.
    Inventors: Gordon Jack, Sridhar K. Kailasam, Stephen C. Brown, Anshu A. Pradhan
  • Patent number: 10481458
    Abstract: This present invention relates to bus bar configurations and fabrication methods of non-rectangular shaped (e.g., triangular, trapezoidal, circular, pentagonal, hexagonal, arched, etc.) optical devices. The optical device comprises a first side, a second side, and a third side adjacent to the second side and two bus bars spanning a portion of the optical device.
    Type: Grant
    Filed: June 17, 2014
    Date of Patent: November 19, 2019
    Assignee: View, Inc.
    Inventors: Abhishek Anant Dixit, Todd Martin, Anshu A. Pradhan, Gordon Jack, Yashraj Bhatnagar
  • Publication number: 20190345058
    Abstract: Methods for protecting transparent electronically conductive layers on glass substrates are described herein. Methods include depositing a sacrificial coating during deposition of the transparent electronically conductive layer, before packing the glass substrate for storage or shipping, after unpacking glass substrates from a stack of glass substrates, and/or after a washing operation prior to fabricating an electrochromic stack on the transparent electronically conductive layer. Methods also include removing the sacrificial coating during a washing operation, during tempering, or prior to depositing an electrochromic stack by, e.g., heating the sacrificial coating or exposing the sacrificial coating to an inert plasma.
    Type: Application
    Filed: May 31, 2017
    Publication date: November 14, 2019
    Inventors: Ronald M. Parker, Anshu A. Pradhan, Abhishek Anant Dixit, Douglas Dauson
  • Publication number: 20190346732
    Abstract: Methods of manufacturing electrochromic windows are described. Insulated glass units (IGU's) are protected, e.g. during handling and shipping, by a protective bumper. The bumper can be custom made using IGU dimension data received from the IGU fabrication tool. The bumper may be made of environmentally friendly materials. Laser isolation configurations and related methods of patterning and/or configuring an electrochromic device on a substrate are described. Edge deletion is used to ensure a good seal between spacer and glass in an IGU and thus better protection of an electrochromic device sealed in the IGU. Configurations for protecting the electrochromic device edge in the primary seal and maximizing viewable area in an electrochromic pane of an IGU are also described.
    Type: Application
    Filed: July 26, 2019
    Publication date: November 14, 2019
    Inventors: Ronald M. Parker, Robert T. Rozbicki, Yashraj Bhatnagar, Abhishek Anant Dixit, Anshu A. Pradhan
  • Publication number: 20190339579
    Abstract: Methods are provided for fabricating electrochromic devices that mitigate formation of short circuits under a top bus bar without predetermining where top bus bars will be applied on the device. Devices fabricated using such methods may be deactivated under the top bus bar, or may include active material under the top bus bar. Methods of fabricating devices with active material under a top bus bar include depositing a modified top bus bar, fabricating self-healing layers in the electrochromic device, and modifying a top transparent conductive layer of the device prior to applying bus bars.
    Type: Application
    Filed: June 26, 2019
    Publication date: November 7, 2019
    Inventors: Sridhar Karthik Kailasam, Dhairya Shrivastava, Zhiwei Cai, Robert T. Rozbicki, Dane Thomas Gillaspie, Todd William Martin, Anshu A. Pradhan, Ronald M. Parker
  • Publication number: 20190331978
    Abstract: Onboard EC window controllers are described. The controllers are configured in close proximity to the EC window, for example, within the IGU. The controller may be part of a window assembly, which includes an IGU having one or more EC panes, and thus does not have to be matched with the EC window, and installed, in the field. The window controllers described herein have a number of advantages because they are matched to the IGU containing one or more EC devices and their proximity to the EC panes of the window overcomes a number of problems associated with conventional controller configurations.
    Type: Application
    Filed: July 10, 2019
    Publication date: October 31, 2019
    Inventors: Dhairya Shrivastava, Anshu A. Pradhan, Stephen Clark Brown, David Walter Groechel, Robert T. Rozbicki
  • Publication number: 20190331977
    Abstract: Electrochromic devices and methods may employ the addition of a defect-mitigating insulating layer which prevents electronically conducting layers and/or electrochromically active layers from contacting layers of the opposite polarity and creating a short circuit in regions where defects form. In some embodiments, an encapsulating layer is provided to encapsulate particles and prevent them from ejecting from the device stack and risking a short circuit when subsequent layers are deposited. The insulating layer may have an electronic resistivity of between about 1 and 108 Ohm-cm. In some embodiments, the insulating layer contains one or more of the following metal oxides: aluminum oxide, zinc oxide, tin oxide, silicon aluminum oxide, cerium oxide, tungsten oxide, nickel tungsten oxide, and oxidized indium tin oxide. Carbides, nitrides, oxynitrides, and oxycarbides may also be used.
    Type: Application
    Filed: July 11, 2019
    Publication date: October 31, 2019
    Inventors: Robert T. Rozbicki, Sridhar Karthik Kailasam, Robin Friedman, Dane Thomas Gillaspie, Anshu A. Pradhan, Disha Mehtani
  • Publication number: 20190324342
    Abstract: Aspects of this disclosure concern controllers and control methods for applying a drive voltage to bus bars of optically switchable devices such as electrochromic devices. Such devices are often provided on windows such as architectural glass. In certain embodiments, the applied drive voltage is controlled in a manner that efficiently drives an optical transition over the entire surface of the electrochromic device. The drive voltage is controlled to account for differences in effective voltage experienced in regions between the bus bars and regions proximate the bus bars. Regions near the bus bars experience the highest effective voltage.
    Type: Application
    Filed: July 1, 2019
    Publication date: October 24, 2019
    Inventors: Gordon E. Jack, Sridhar Karthik Kailasam, Stephen Clark Brown, Anshu A. Pradhan
  • Patent number: 10451950
    Abstract: Aspects of this disclosure concern controllers and control methods for applying a drive voltage to bus bars of optically switchable devices such as electrochromic devices. Such devices are often provided on windows such as architectural glass. In certain embodiments, the applied drive voltage is controlled in a manner that efficiently drives an optical transition over the entire surface of the electrochromic device. The drive voltage is controlled to account for differences in effective voltage experienced in regions between the bus bars and regions proximate the bus bars. Regions near the bus bars experience the highest effective voltage.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: October 22, 2019
    Assignee: View, Inc.
    Inventors: Gordon Jack, Anshu Pradhan
  • Publication number: 20190302562
    Abstract: Methods, apparatus, and systems for mitigating pinhole defects in optical devices such as electrochromic windows. One method mitigates a pinhole defect in an electrochromic device by identifying the site of the pinhole defect and obscuring the pinhole to make it less visually discernible.
    Type: Application
    Filed: June 17, 2019
    Publication date: October 3, 2019
    Inventors: Robin Friedman, Sridhar K. Kailasam, Rao Mulpuri, Ronald M. Parker, Ronald A. Powell, Anshu A. Pradhan, Robert T. Rozbicki, Vinod Khosla
  • Patent number: 10429712
    Abstract: This disclosure provides configurations, methods of use, and methods of fabrication for a bus bar of an optically switchable device. In one aspect, an apparatus includes a substrate and an optically switchable device disposed on a surface of the substrate. The optically switchable device has a perimeter with at least one corner including a first side, a second side, and a first vertex joining the first side and the second side. A first bus bar and a second bus bar are affixed to the optically switchable device and configured to deliver current and/or voltage for driving switching of the device. The first bus bar is proximate to the corner and includes a first arm and a second arm having a configuration that substantially follows the shape of the first side, the first vertex, and the second side of the corner.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: October 1, 2019
    Assignee: View, Inc.
    Inventors: Gordon Jack, Anshu Pradhan, Kaustubh Nadkarni
  • Publication number: 20190294016
    Abstract: Various embodiments herein relate to electrochromic windows that are bird friendly, as well as methods and apparatus for forming such windows. Bird friendly windows include one or more elements that make the window visible to birds so that the birds recognize that they cannot fly through the window. An electrochromic window includes one or more transparent substrates, wherein at least one of the substrates is an electrochromic (EC) lite including an electrochromic device and a pattern formed on at least one of the substrates by a laser, the pattern including a first feature configured to provide a set of optical properties different than optical properties of the transparent substrate. The set of optical properties includes one or more characteristics of refractivity, reflectivity and diffraction.
    Type: Application
    Filed: May 30, 2019
    Publication date: September 26, 2019
    Inventors: John Gordon Halbert Mathew, Robert T. Rozbicki, Luis Vidal Ponce Cabrera, Anshu A. Pradhan, Abhishek Anant Dixit, Eithan Ritz
  • Patent number: 10409130
    Abstract: Methods of manufacturing electrochromic windows are described. Insulated glass units (IGU's) are protected, e.g. during handling and shipping, by a protective bumper. The bumper can be custom made using IGU dimension data received from the IGU fabrication tool. The bumper may be made of environmentally friendly materials. Laser isolation configurations and related methods of patterning and/or configuring an electrochromic device on a substrate are described. Edge deletion is used to ensure a good seal between spacer and glass in an IGU and thus better protection of an electrochromic device sealed in the IGU. Configurations for protecting the electrochromic device edge in the primary seal and maximizing viewable area in an electrochromic pane of an IGU are also described.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: September 10, 2019
    Assignee: View, Inc.
    Inventors: Ronald M. Parker, Robert T. Rozbicki, Yashraj Bhatnagar, Abhishek Anant Dixit, Anshu A. Pradhan
  • Publication number: 20190271895
    Abstract: Onboard EC window controllers are described. The controllers are configured in close proximity to the EC window, for example, within the IGU. The controller may be part of a window assembly, which includes an IGU having one or more EC panes, and thus does not have to be matched with the EC window, and installed, in the field. The window controllers described herein have a number of advantages because they are matched to the IGU containing one or more EC devices and their proximity to the EC panes of the window overcomes a number of problems associated with conventional controller configurations.
    Type: Application
    Filed: March 11, 2019
    Publication date: September 5, 2019
    Inventors: Dhairya Shrivastava, Anshu A. Pradhan, Stephen C. Brown, David Walter Groechel, Robert T. Rozbicki