Patents by Inventor Anson V. Hatch

Anson V. Hatch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10627366
    Abstract: Embodiments of fluid distribution manifolds, cartridges, and microfluidic systems are described herein. Fluid distribution manifolds may include an insert member and a manifold base and may define a substantially closed channel within the manifold when the insert member is press-fit into the base. Cartridges described herein may allow for simultaneous electrical and fluidic interconnection with an electrical multiplex board and may be held in place using magnetic attraction.
    Type: Grant
    Filed: January 16, 2017
    Date of Patent: April 21, 2020
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Ronald F. Renzi, Gregory J. Sommer, Anup K. Singh, Anson V. Hatch, Mark R. Claudnic, Ying-Chih Wang, James L. Van De Vreugde
  • Publication number: 20170122904
    Abstract: Embodiments of fluid distribution manifolds, cartridges, and microfluidic systems are described herein. Fluid distribution manifolds may include an insert member and a manifold base and may define a substantially closed channel within the manifold when the insert member is press-fit into the base. Cartridges described herein may allow for simultaneous electrical and fluidic interconnection with an electrical multiplex board and may be held in place using magnetic attraction.
    Type: Application
    Filed: January 16, 2017
    Publication date: May 4, 2017
    Inventors: Ronald F. Renzi, Gregory J. Sommer, Anup K. Singh, Anson V. Hatch, Mark R. Claudnic, Ying-Chih Wang, James L. Van De Vreugde
  • Patent number: 9579649
    Abstract: Embodiments of fluid distribution manifolds, cartridges, and microfluidic systems are described herein. Fluid distribution manifolds may include an insert member and a manifold base and may define a substantially closed channel within the manifold when the insert member is press-fit into the base. Cartridges described herein may allow for simultaneous electrical and fluidic interconnection with an electrical multiplex board and may be held in place using magnetic attraction.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: February 28, 2017
    Assignee: Sandia Corporation
    Inventors: Ronald F. Renzi, Gregory J. Sommer, Anup K. Singh, Anson V. Hatch, Mark R. Claudnic, Ying-Chih Wang, James L. Van de Vreugde
  • Patent number: 9409357
    Abstract: Embodiments of the present invention provide devices, systems, and methods for microscale isoelectric fractionation. Analytes in a sample may be isolated according to their isoelectric point within a fractionation microchannel. A microfluidic device according to an embodiment of the invention includes a substrate at least partially defining a fractionation microchannel. The fractionation microchannel has at least one cross-sectional dimension equal to or less than 1 mm. A plurality of membranes of different pHs are disposed in the microchannel. Analytes having an isoelectric point between the pH of the membranes may be collected in a region of the fractionation channel between the first and second membranes through isoelectric fractionation.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: August 9, 2016
    Assignee: Sandia Corporation
    Inventors: Gregory J. Sommer, Anson V. Hatch, Ying-Chih Wang, Anup K. Singh
  • Patent number: 9201069
    Abstract: Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: December 1, 2015
    Assignee: Sandia Corporation
    Inventors: Anson V. Hatch, Gregory J. Sommer, Anup K. Singh, Ying-Chih Wang, Vinay Abhyankar
  • Patent number: 9005417
    Abstract: Embodiments of the present invention provide devices, systems, and methods for microscale isoelectric fractionation. Analytes in a sample may be isolated according to their isoelectric point within a fractionation microchannel. A microfluidic device according to an embodiment of the invention includes a substrate at least partially defining a fractionation microchannel. The fractionation microchannel has at least one cross-sectional dimension equal to or less than 1 mm. A plurality of membranes of different pHs are disposed in the microchannel. Analytes having an isoelectric point between the pH of the membranes may be collected in a region of the fractionation channel between the first and second membranes through isoelectric fractionation.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: April 14, 2015
    Assignee: Sandia Corporation
    Inventors: Gregory J. Sommer, Anson V. Hatch, Ying-Chih Wang, Anup K. Singh
  • Publication number: 20150038372
    Abstract: Embodiments of the present invention provide methods, microfluidic devices, and systems for the detection of an active target agent in a fluid sample. A substrate molecule is used that contains a sequence which may cleave in the presence of an active target agent. A SNAP25 sequence is described, for example, that may be cleaved in the presence of Botulinum Neurotoxin. The substrate molecule includes a reporter moiety. The substrate molecule is exposed to the sample, and resulting reaction products separated using electrophoretic separation. The elution time of the reporter moiety may be utilized to identify the presence or absence of the active target agent.
    Type: Application
    Filed: September 24, 2014
    Publication date: February 5, 2015
    Inventors: Gregory J. Sommer, Anson V. Hatch, Anup K. Singh, Ying-Chih Wang
  • Patent number: 8945914
    Abstract: Embodiments of the present invention are directed toward devices, systems, and method for conducting sandwich assays using sedimentation. In one example, a method includes generating complexes on a plurality of beads in a fluid sample, individual ones of the complexes comprising a capture agent, a target analyte, and a labeling agent. The plurality of beads including the complexes may be transported through a density media, wherein the density media has a density lower than a density of the beads and higher than a density of the fluid sample, and wherein the transporting occurs, at least in part, by sedimentation. Signal may be detected from the labeling agents of the complexes.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: February 3, 2015
    Assignee: Sandia Corporation
    Inventors: Ulrich Y. Schaff, Gregory J. Sommer, Anup K. Singh, Anson V. Hatch
  • Patent number: 8871496
    Abstract: Embodiments of the present invention provide methods, microfluidic devices, and systems for the detection of an active target agent in a fluid sample. A substrate molecule is used that contains a sequence which may cleave in the presence of an active target agent. A SNAP25 sequence is described, for example, that may be cleaved in the presence of Botulinum Neurotoxin. The substrate molecule includes a reporter moiety. The substrate molecule is exposed to the sample, and resulting reaction products separated using electrophoretic separation. The elution time of the reporter moiety may be utilized to identify the presence or absence of the active target agent.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: October 28, 2014
    Assignee: Sandia Corporation
    Inventors: Gregory J. Sommer, Anson V. Hatch, Anup K. Singh, Ying-Chih Wang
  • Publication number: 20140178252
    Abstract: Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.
    Type: Application
    Filed: February 25, 2014
    Publication date: June 26, 2014
    Applicant: Sandia Corporation
    Inventors: Anson V. Hatch, Gregory J. Sommer, Anup K. Singh, Ying-Chih Wang, Vinay Abhyankar
  • Patent number: 8728290
    Abstract: Disclosed is a novel microfluidic device enabling on-chip implementation of a two-dimensional separation methodology. Previously disclosed microscale immobilized pH gradients (IPG) are combined with perpendicular polyacrylamide gel electrophoresis (PAGE) microchannels to achieve orthogonal separations of biological samples. Device modifications enable inclusion of sodium dodecyl sulfate (SDS) in the second dimension. The device can be fabricated to use either continuous IPG gels, or the microscale isoelectric fractionation membranes we have also previously disclosed, for the first dimension. The invention represents the first all-gel two-dimensional separation microdevice, with significantly higher resolution power over existing devices.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: May 20, 2014
    Assignee: Sandia Corporation
    Inventors: Gregory J. Sommer, Anson V. Hatch, Anup K. Singh, Ying-Chih Wang
  • Patent number: 8703058
    Abstract: Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.
    Type: Grant
    Filed: September 9, 2009
    Date of Patent: April 22, 2014
    Assignee: Sandia Corporation
    Inventors: Anson V. Hatch, Gregory J. Sommer, Anup K. Singh, Ying-Chih Wang, Vinay V. Abhyankar
  • Patent number: 8394312
    Abstract: Methods for making a microfluidic device according to embodiments of the present invention include defining˜cavity. Polymer precursor solution is positioned in the cavity, and exposed to light to begin the polymerization process and define a microchannel. In some embodiments, after the polymerization process is partially complete, a solvent rinse is performed, or fresh polymer precursor introduced into the microchannel. This may promote removal of unpolymerized material from the microchannel and enable smaller feature sizes. The polymer precursor solution may contain an iniferter. Polymerized features therefore may be capped with the iniferter, which is photoactive. The iniferter may aid later binding of a polyacrylamide gel to the microchannel surface.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: March 12, 2013
    Assignee: Sandia Corporation
    Inventors: Gregory J. Sommer, Anson V. Hatch, Ying-Chih Wang, Anup K. Singh, Ronald F. Renzi, Mark R. Claudnic
  • Patent number: 8329016
    Abstract: Disclosed is a novel microfluidic device enabling on-chip implementation of a two-dimensional separation methodology. Previously disclosed microscale immobilized pH gradients (IPG) are combined with perpendicular polyacrylamide gel electrophoresis (PAGE) microchannels to achieve orthogonal separations of biological samples. Device modifications enable inclusion of sodium dodecyl sulfate (SDS) in the second dimension. The device can be fabricated to use either continuous IPG gels, or the microscale isoelectric fractionation membranes we have also previously disclosed, for the first dimension. The invention represents the first all-gel two-dimensional separation microdevice, with significantly higher resolution power over existing devices.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: December 11, 2012
    Assignee: Sandia Corporation
    Inventors: Gregory J. Sommer, Anson V. Hatch, Anup K. Singh, Ying-Chih Wang
  • Publication number: 20120085644
    Abstract: Embodiments of fluid distribution manifolds, cartridges, and microfluidic systems are described herein. Fluid distribution manifolds may include an insert member and a manifold base and may define a substantially closed channel within the manifold when the insert member is press-fit into the base. Cartridges described herein may allow for simultaneous electrical and fluidic interconnection with an electrical multiplex board and may be held in place using magnetic attraction.
    Type: Application
    Filed: October 7, 2010
    Publication date: April 12, 2012
    Inventors: Ronald F. Renzi, Gregory J. Sommer, Anup K. Singh, Anson V. Hatch, Mark R. Claudnic, Ying-Chih Wang, James L. Van De Vreugde
  • Patent number: 8047829
    Abstract: Methods for making a micofluidic device according to embodiments of the present invention include defining a cavity. Polymer precursor solution is positioned in the cavity, and exposed to light to begin the polymerization process and define a microchannel. In some embodiments, after the polymerization process is partially complete, a solvent rinse is performed, or fresh polymer precursor introduced into the microchannel. This may promote removal of unpolymerized material from the microchannel and enable smaller feature sizes. The polymer precursor solution may contain an iniferter. Polymerized features therefore may be capped with the iniferter, which is photoactive. The iniferter may aid later binding of a polyacrylamide gel to the microchannel surface.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: November 1, 2011
    Assignee: Sandia Corporation
    Inventors: Gregory J. Sommer, Anson V. Hatch, Ying-Chih Wang, Anup K. Singh, Ronald F. Renzi, Mark R. Claudnic