Patents by Inventor Anthoniraj Lourdhusamy

Anthoniraj Lourdhusamy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10175214
    Abstract: A sensor includes an electrode and a seed structure. The electrode is configured to measure current due to movement of particulate matter relative to the electrode. The seed structure is deposited on the electrode. The seed structure includes a plurality of elongated members extending outward from the surface of the electrode. The elongated members are configured to promote charge transfer to particles and/or agglomerates of the particulate matter during operation of the sensor.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: January 8, 2019
    Assignee: EMISENSE TECHNOLOGIES, LLC
    Inventors: Klaus Allmendinger, Joe Fitzpatrick, Brett Henderson, Anthoniraj Lourdhusamy, Lee Sorensen, James Steppan, Gangquiang Wang
  • Patent number: 9857326
    Abstract: A method for analysis of a gas stream. The method includes identifying an affected region of an affected waveform signal corresponding to at least one characteristic of the gas stream. The method also includes calculating a voltage-current time differential between the affected region of the affected waveform signal and a corresponding region of an original waveform signal. The affected region and the corresponding region of the waveform signals have a sensitivity specific to the at least one characteristic of the gas stream. The method also includes generating a value for the at least one characteristic of the gas stream based on the calculated voltage-current time differential.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: January 2, 2018
    Assignees: Lawrence Livermore National Security, LLC, EmiSense Technologies, LLC
    Inventors: Leta Yar-Li Woo, Robert Scott Glass, Joseph Jay Fitzpatrick, Gangqiang Wang, Brett Tamatea Henderson, Anthoniraj Lourdhusamy, James John Steppan, Klaus Karl Allmendinger
  • Patent number: 9857325
    Abstract: A device for signal processing. The device includes a signal generator, a signal detector, and a processor. The signal generator generates an original waveform. The signal detector detects an affected waveform. The processor is coupled to the signal detector. The processor receives the affected waveform from the signal detector. The processor also compares at least one portion of the affected waveform with the original waveform. The processor also determines a difference between the affected waveform and the original waveform. The processor also determines a value corresponding to a unique portion of the determined difference between the original and affected waveforms. The processor also outputs the determined value.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: January 2, 2018
    Assignees: Lawrence Livermore National Security, LLC, EmiSense Technologies, LLC
    Inventors: Leta Yar-Li Woo, Robert Scott Glass, Joseph Jay Fitzpatrick, Gangqiang Wang, Brett Tamatea Henderson, Anthoniraj Lourdhusamy, James John Steppan, Klaus Karl Allmendinger
  • Patent number: 9857239
    Abstract: A method for temperature analysis of a gas stream. The method includes identifying a temperature parameter of an affected waveform signal. The method also includes calculating a change in the temperature parameter by comparing the affected waveform signal with an original waveform signal. The method also includes generating a value from the calculated change which corresponds to the temperature of the gas stream.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: January 2, 2018
    Assignees: Lawrence Livermore National Security, LLC, EmiSense Technologies, LLC
    Inventors: Leta Yar-Li Woo, Robert Scott Glass, Joseph Jay Fitzpatrick, Gangqiang Wang, Brett Tamatea Henderson, Anthoniraj Lourdhusamy, James John Steppan, Klaus Karl Allmendinger
  • Publication number: 20170284899
    Abstract: A sensor includes an electrode and a seed structure. The electrode is configured to measure current due to movement of particulate matter relative to the electrode. The seed structure is deposited on the electrode. The seed structure includes a plurality of elongated members extending outward from the surface of the electrode. The elongated members are configured to promote charge transfer to particles and/or agglomerates of the particulate matter during operation of the sensor.
    Type: Application
    Filed: January 9, 2017
    Publication date: October 5, 2017
    Applicant: EmiSense Technologies, LLC
    Inventors: Klaus Allmendinger, Joe Fitzpatrick, Brett Henderson, Anthoniraj Lourdhusamy, Lee Sorensen, James Steppan, Gangquiang Wang
  • Publication number: 20170234743
    Abstract: A device for signal processing. The device includes a signal generator, a signal detector, and a processor. The signal generator generates an original waveform. The signal detector detects an affected waveform. The processor is coupled to the signal detector. The processor receives the affected waveform from the signal detector. The processor also compares at least one portion of the affected waveform with the original waveform. The processor also determines a difference between the affected waveform and the original waveform. The processor also determines a value corresponding to a unique portion of the determined difference between the original and affected waveforms. The processor also outputs the determined value.
    Type: Application
    Filed: February 28, 2017
    Publication date: August 17, 2017
    Inventors: Leta Yar-Li Woo, Robert Scott Glass, Joseph Jay Fitzpatrick, Gangqiang Wang, Brett Tamatea Henderson, Anthoniraj Lourdhusamy, James John Steppan, Klaus Karl Allmendinger
  • Publication number: 20170234828
    Abstract: A method for analysis of a gas stream. The method includes identifying an affected region of an affected waveform signal corresponding to at least one characteristic of the gas stream. The method also includes calculating a voltage-current time differential between the affected region of the affected waveform signal and a corresponding region of an original waveform signal. The affected region and the corresponding region of the waveform signals have a sensitivity specific to the at least one characteristic of the gas stream. The method also includes generating a value for the at least one characteristic of the gas stream based on the calculated voltage-current time differential.
    Type: Application
    Filed: February 28, 2017
    Publication date: August 17, 2017
    Inventors: Leta Yar-Li Woo, Robert Scott Glass, Joseph Jay Fitzpatrick, Gangqiang Wang, Brett Tamatea Henderson, Anthoniraj Lourdhusamy, James John Steppan, Klaus Karl Allmendinger
  • Publication number: 20170234827
    Abstract: A device for signal processing. The device includes a signal generator, a signal detector, and a processor. The signal generator generates an original waveform. The signal detector detects an affected waveform. The processor is coupled to the signal detector. The processor receives the affected waveform from the signal detector. The processor also compares at least one portion of the affected waveform with the original waveform. The processor also determines a difference between the affected waveform and the original waveform. The processor also determines a value corresponding to a unique portion of the determined difference between the original and affected waveforms. The processor also outputs the determined value.
    Type: Application
    Filed: February 28, 2017
    Publication date: August 17, 2017
    Inventors: Leta Yar-Li Woo, Robert Scott Glass, Joseph Jay Fitzpatrick, Gangqiang Wang, Brett Tamatea Henderson, Anthoniraj Lourdhusamy, James John Steppan, Klaus Karl Allmendinger
  • Patent number: 9581564
    Abstract: A device for signal processing. The device includes a signal generator, a signal detector, and a processor. The signal generator generates an original waveform. The signal detector detects an affected waveform. The processor is coupled to the signal detector. The processor receives the affected waveform from the signal detector. The processor also compares at least one portion of the affected waveform with the original waveform. The processor also determines a difference between the affected waveform and the original waveform. The processor also determines a value corresponding to a unique portion of the determined difference between the original and affected waveforms. The processor also outputs the determined value.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: February 28, 2017
    Assignees: EmiSense Technologies, LLC, Lawrence Livermore National Security, LLC
    Inventors: Leta Yar-Li Woo, Robert Scott Glass, Joseph Jay Fitzpatrick, Gangqiang Wang, Brett Tamatea Henderson, Anthoniraj Lourdhusamy, James John Steppan, Klaus Karl Allmendinger
  • Patent number: 9541535
    Abstract: A sensor includes an electrode and a seed structure. The electrode is configured to measure current due to movement of particulate matter relative to the electrode. The seed structure is deposited on the electrode. The seed structure includes a plurality of elongated members extending outward from the surface of the electrode. The elongated members are configured to promote charge transfer to particles and/or agglomerates of the particulate matter during operation of the sensor.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: January 10, 2017
    Assignee: EmiSense Technologies, LLC
    Inventors: Klaus Allmendinger, Joe Fitzpatrick, Brett Henderson, Anthoniraj Lourdhusamy, Lee Sorensen, James Steppan, Gangquiang Wang
  • Publication number: 20150101937
    Abstract: A device for signal processing. The device includes a signal generator, a signal detector, and a processor. The signal generator generates an original waveform. The signal detector detects an affected waveform. The processor is coupled to the signal detector. The processor receives the affected waveform from the signal detector. The processor also compares at least one portion of the affected waveform with the original waveform. The processor also determines a difference between the affected waveform and the original waveform. The processor also determines a value corresponding to a unique portion of the determined difference between the original and affected waveforms. The processor also outputs the determined value.
    Type: Application
    Filed: October 16, 2013
    Publication date: April 16, 2015
    Applicants: Lawrence Livermore National Security, LLC, EmiSense Technologies, LLC
    Inventors: Leta Yar-Li Woo, Robert Scott Glass, Joseph Jay Fitzpatrick, Gangqiang Wang, Brett Tamatea Henderson, Anthoniraj Lourdhusamy, James John Steppan, Klaus Karl Allmendinger
  • Publication number: 20140144208
    Abstract: A sensor includes an electrode and a seed structure. The electrode is configured to measure current due to movement of particulate matter relative to the electrode. The seed structure is deposited on the electrode. The seed structure includes a plurality of elongated members extending outward from the surface of the electrode. The elongated members are configured to promote charge transfer to particles and/or agglomerates of the particulate matter during operation of the sensor.
    Type: Application
    Filed: January 28, 2014
    Publication date: May 29, 2014
    Applicant: EmiSense Technologies, LLC
    Inventors: Klaus Allmendinger, Joe Fitzpatrick, Brett Henderson, Anthoniraj Lourdhusamy, Lee Sorensen, James Steppan, Gangquiang Wang
  • Patent number: 8713991
    Abstract: A sensor assembly includes a voltage source, a sensor electrode, a grounded assembly, an integration capacitor, and a current meter. The sensor electrode is coupled to the voltage source to receive a voltage. The sensor electrode is disposed within a directed and controlled exhaust flow to facilitate particle agglomeration into particulate matter structures at a surface of the sensor electrode. The grounded assembly is coupled to a ground reference and disposed at a distance from the sensor electrode. The integration capacitor is coupled to a negative side of the voltage source to integrate in time current pulses from charge transfers from the sensor electrode of the particulate matter structures. The current meter is coupled to the voltage source to measure an integrated value of current supplied to the voltage source in response to charge transfers from the sensor electrode to the particulate matter structures in the exhaust flow.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: May 6, 2014
    Assignee: EmiSense Technologies, LLC
    Inventors: Klaus Allmendinger, Brett Henderson, Anthoniraj Lourdhusamy, Lee Sorensen, James Steppan
  • Patent number: 8671736
    Abstract: A sensor includes a housing, a central sensor electrode assembly, an insulating member, and a trace. The central sensor electrode assembly is coupled to a supply side of a voltage source. The insulating member is coupled between the housing and the central sensor electrode assembly. The insulating member circumscribes a section of the central sensor electrode assembly. The trace is coupled to the insulating member and circumscribes the section of the central sensor electrode assembly. The trace directs at least a portion of leakage current away from a voltage ground offset on an opposite side of the central sensor electrode assembly.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: March 18, 2014
    Assignee: EmiSense Technologies, LLC
    Inventors: Klaus Allmendinger, Joe Fitzpatrick, Brett Henderson, Anthoniraj Lourdhusamy, Lee Sorensen, James Steppan, Gangquiang Wang
  • Publication number: 20120312074
    Abstract: A sensor assembly to measure particulate matter is described. The sensor assembly includes a voltage source, a sensor electrode, a grounded assembly, an integration capacitor, and a current meter. The sensor electrode is coupled to the voltage source to receive a voltage. The sensor electrode is disposed within a directed and controlled exhaust flow within the sensor assembly to facilitate particle agglomeration into particulate matter structures at a surface of the sensor electrode. The grounded assembly is coupled to a ground reference and disposed at a distance from the sensor electrode. The integration capacitor is coupled to a negative side of the voltage source. The integration capacitor is configured to integrate in time current pulses from charge transfers from the sensor electrode of the particulate matter structures.
    Type: Application
    Filed: December 8, 2011
    Publication date: December 13, 2012
    Applicant: EMISENSE TECHNOLOGIES, LLC
    Inventors: Klaus Allmendinger, Brett Henderson, Anthoniraj Lourdhusamy, Lee Sorenson, James Steppan
  • Patent number: 7739924
    Abstract: A flow head for a gas sensor having a sensing element is provided. The flow head includes a body at least partially defining a cavity in thermal communication with the sensing element. The body includes an inlet port located within an annular surface of the body and an outlet port located within the annular surface of the body. The body also includes an inlet passage offset from and parallel to the cavity, wherein the inlet passage configures the inlet port and the cavity to be in fluid communication with one another. The body further includes an outlet passage offset from and parallel to the cavity, wherein the outlet passage configures the outlet port and the cavity to be in fluid communication with one another.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: June 22, 2010
    Assignee: Caterpillar Inc.
    Inventors: Anthoniraj Lourdhusamy, Balakrishnan G. Nair
  • Publication number: 20090211333
    Abstract: A flow head for a gas sensor having a sensing element is provided. The flow head includes a body at least partially defining a cavity in thermal communication with the sensing element. The body includes an inlet port located within an annular surface of the body and an outlet port located within the annular surface of the body. The body also includes an inlet passage offset from and parallel to the cavity, wherein the inlet passage configures the inlet port and the cavity to be in fluid communication with one another. The body further includes an outlet passage offset from and parallel to the cavity, wherein the outlet passage configures the outlet port and the cavity to be in fluid communication with one another.
    Type: Application
    Filed: February 27, 2008
    Publication date: August 27, 2009
    Inventors: Anthoniraj Lourdhusamy, Balakrishnan G. Nair