Patents by Inventor Anthony Bernard Traynor

Anthony Bernard Traynor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170332178
    Abstract: A method of fabricating a micro-electrical-mechanical system (MEMS) transducer comprises the steps of forming a membrane on a substrate, and forming a back-volume in the substrate. The step of forming a back-volume in the substrate comprises the steps of forming a first back-volume portion and a second back-volume portion, the first back-volume portion being separated from the second back-volume portion by a step in a sidewall of the back-volume. The cross-sectional area of the second back-volume portion can be made greater than the cross-sectional area of the membrane, thereby enabling the back-volume to be increased without being constrained by the cross-sectional area of the membrane. The back-volume may comprise a third back-volume portion. The third back-volume portion enables the effective diameter of the membrane to be formed more accurately.
    Type: Application
    Filed: August 1, 2017
    Publication date: November 16, 2017
    Inventors: Anthony Bernard Traynor, Richard Ian Laming, Tsjerk H. Hoekstra
  • Patent number: 9756430
    Abstract: A method of fabricating a micro-electrical-mechanical system (MEMS) transducer comprises the steps of forming a membrane on a substrate, and forming a back-volume in the substrate. The step of forming a back-volume in the substrate comprises the steps of forming a first back-volume portion and a second back-volume portion, the first back-volume portion being separated from the second back-volume portion by a step in a sidewall of the back-volume. The cross-sectional area of the second back-volume portion can be made greater than the cross-sectional area of the membrane, thereby enabling the back-volume to be increased without being constrained by the cross-sectional area of the membrane. The back-volume may comprise a third back-volume portion. The third back-volume portion enables the effective diameter of the membrane to be formed more accurately.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: September 5, 2017
    Assignee: Cirrus Logic, Inc.
    Inventors: Anthony Bernard Traynor, Richard Ian Laming, Tsjerk H. Hoekstra
  • Publication number: 20160255442
    Abstract: A method of fabricating a micro-electrical-mechanical system (MEMS) transducer comprises the steps of forming a membrane on a substrate, and forming a back-volume in the substrate. The step of forming a back-volume in the substrate comprises the steps of forming a first back-volume portion and a second back-volume portion, the first back-volume portion being separated from the second back-volume portion by a step in a sidewall of the back-volume. The cross-sectional area of the second back-volume portion can be made greater than the cross-sectional area of the membrane, thereby enabling the back-volume to be increased without being constrained by the cross-sectional area of the membrane. The back-volume may comprise a third back-volume portion. The third back-volume portion enables the effective diameter of the membrane to be formed more accurately.
    Type: Application
    Filed: May 6, 2016
    Publication date: September 1, 2016
    Inventors: Anthony Bernard Traynor, Richard Ian Laming, Tsjerk H. Hoekstra
  • Patent number: 9363610
    Abstract: A method of fabricating a micro-electrical-mechanical system (MEMS) transducer comprises the steps of forming a membrane on a substrate, and forming a back-volume in the substrate. The step of forming a back-volume in the substrate comprises the steps of forming a first back-volume portion and a second back-volume portion, the first back-volume portion being separated from the second back-volume portion by a step in a sidewall of the back-volume. The cross-sectional area of the second back-volume portion can be made greater than the cross-sectional area of the membrane, thereby enabling the back-volume to be increased without being constrained by the cross-sectional area of the membrane. The back-volume may comprise a third back-volume portion. The third back-volume portion enables the effective diameter of the membrane to be formed more accurately.
    Type: Grant
    Filed: August 5, 2014
    Date of Patent: June 7, 2016
    Assignee: Cirrus Logic, Inc.
    Inventors: Anthony Bernard Traynor, Richard Ian Laming, Tsjerk H. Hoekstra
  • Publication number: 20140341402
    Abstract: A method of fabricating a micro-electrical-mechanical system (MEMS) transducer comprises the steps of forming a membrane on a substrate, and forming a back-volume in the substrate. The step of forming a back-volume in the substrate comprises the steps of forming a first back-volume portion and a second back-volume portion, the first back-volume portion being separated from the second back-volume portion by a step in a sidewall of the back-volume. The cross-sectional area of the second back-volume portion can be made greater than the cross-sectional area of the membrane, thereby enabling the back-volume to be increased without being constrained by the cross-sectional area of the membrane. The back-volume may comprise a third back-volume portion. The third back-volume portion enables the effective diameter of the membrane to be formed more accurately.
    Type: Application
    Filed: August 5, 2014
    Publication date: November 20, 2014
    Inventors: Anthony Bernard Traynor, Richard Ian Laming, Tsjerk H. Hoekstra
  • Patent number: 8803261
    Abstract: A method of fabricating a micro-electrical-mechanical system (MEMS) transducer comprises the steps of forming a membrane on a substrate, and forming a back-volume in the substrate. The step of forming a back-volume in the substrate comprises the steps of forming a first back-volume portion and a second back-volume portion, the first back-volume portion being separated from the second back-volume portion by a step in a sidewall of the back-volume. The cross-sectional area of the second back-volume portion can be made greater than the cross-sectional area of the membrane, thereby enabling the back-volume to be increased without being constrained by the cross-sectional area of the membrane. The back-volume may comprise a third back-volume portion. The third back-volume portion enables the effective diameter of the membrane to be formed more accurately.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: August 12, 2014
    Assignee: Wolfson Microelectronics plc
    Inventors: Anthony Bernard Traynor, Richard Ian Laming, Tsjerk H. Hoekstra
  • Publication number: 20140191344
    Abstract: A method of fabricating a micro-electrical-mechanical system (MEMS) transducer comprises the steps of forming a membrane on a substrate, and forming a back-volume in the substrate. The step of forming a back-volume in the substrate comprises the steps of forming a first back-volume portion and a second back-volume portion, the first back-volume portion being separated from the second back-volume portion by a step in a sidewall of the back-volume. The cross-sectional area of the second back-volume portion can be made greater than the cross-sectional area of the membrane, thereby enabling the back-volume to be increased without being constrained by the cross-sectional area of the membrane . The back-volume may comprise a third back-volume portion. The third back-volume portion enables the effective diameter of the membrane to be formed more accurately.
    Type: Application
    Filed: March 10, 2014
    Publication date: July 10, 2014
    Applicant: Wolfson Microelectronics plc
    Inventors: Anthony Bernard Traynor, Richard Ian Laming, Tsjerk H. Hoekstra
  • Patent number: 8698256
    Abstract: A method of fabricating a micro-electrical-mechanical system (MEMS) transducer comprises the steps of forming a membrane on a substrate, and forming a back-volume in the substrate. The step of forming a back-volume in the substrate comprises the steps of forming a first back-volume portion and a second back-volume portion, the first back-volume portion being separated from the second back-volume portion by a step in a sidewall of the back-volume. The cross-sectional area of the second back-volume portion can be made greater than the cross-sectional area of the membrane, thereby enabling the back-volume to be increased without being constrained by the cross-sectional area of the membrane. The back-volume may comprise a third back-volume portion. The third back-volume portion enables the effective diameter of the membrane to be formed more accurately.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: April 15, 2014
    Assignee: Wolfson Microelectronics plc
    Inventors: Anthony Bernard Traynor, Richard Ian Laming, Tsjerk Hans Hoekstra
  • Publication number: 20130256816
    Abstract: A method of fabricating a micro-electrical-mechanical system (MEMS) transducer comprises the steps of forming a membrane on a substrate, and forming a back-volume in the substrate. The step of forming a back-volume in the substrate comprises the steps of forming a first back-volume portion and a second back-volume portion, the first back-volume portion being separated from the second back-volume portion by a step in a sidewall of the back-volume. The cross-sectional area of the second back-volume portion can be made greater than the cross-sectional area of the membrane, thereby enabling the back-volume to be increased without being constrained by the cross-sectional area of the membrane. The back-volume may comprise a third back-volume portion. The third back-volume portion enables the effective diameter of the membrane to be formed more accurately.
    Type: Application
    Filed: May 24, 2013
    Publication date: October 3, 2013
    Applicant: Wolfson Microelectronics plc
    Inventors: Anthony Bernard Traynor, Richard Ian Laming, Tsjerk Hans Hoekstra
  • Patent number: 8546170
    Abstract: A method of fabricating a micro-electrical-mechanical system (MEMS) transducer comprises the steps of forming a membrane (5) on a substrate (3), and forming a back-volume in the substrate. The step of forming a back-volume in the substrate comprises the steps of forming a first back-volume portion (7a) and a second back-volume portion (7b), the first back-volume portion (7a) being separated from the second back-volume portion (7b) by a step in a sidewall of the back-volume. The cross-sectional area of the second back-volume portion (7b) can be made greater than the cross-sectional area of the membrane (5), thereby enabling the back-volume to be increased without being constrained by the cross-sectional area of the membrane (5). The back-volume may comprise a third back-volume portion. The third back-volume portion enables the effective diameter of the membrane to be formed more accurately.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: October 1, 2013
    Assignee: Wolfson Microelectronics plc
    Inventors: Anthony Bernard Traynor, Richard Ian Laming, Tsjerk Hans Hoekstra
  • Patent number: 8482088
    Abstract: A MEMS device comprises a membrane layer and a back-plate layer formed over the membrane layer. The membrane layer comprises an outer portion and an inner portion raised relative to the outer portion and a sidewall for connecting the inner portion and the outer portion. The sidewall is non-orthogonal to the outer portion.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: July 9, 2013
    Assignee: Wolfson Microelectronics plc
    Inventors: Richard Ian Laming, Colin Robert Jenkins, Anthony Bernard Traynor
  • Publication number: 20110089504
    Abstract: A method of fabricating a micro-electrical-mechanical system (MEMS) transducer comprises the steps of forming a membrane (5) on a substrate (3), and forming a back-volume in the substrate. The step of forming a back-volume in the substrate comprises the steps of forming a first back-volume portion (7a) and a second back-volume portion (7b), the first back-volume portion (7a) being separated from the second back-volume portion (7b) by a step in a sidewall of the back-volume. The cross-sectional area of the second back-volume portion (7b) can be made greater than the cross-sectional area of the membrane (5), thereby enabling the back-volume to be increased without being constrained by the cross-sectional area of the membrane (5). The back-volume may comprise a third back-volume portion. The third back-volume portion enables the effective diameter of the membrane to be formed more accurately.
    Type: Application
    Filed: August 15, 2008
    Publication date: April 21, 2011
    Inventors: Anthony Bernard Traynor, Richard Ian Laming, Tsjerk Hans Hoekstra
  • Publication number: 20110062535
    Abstract: A MEMS device comprises a substrate having at least a first transducer optimized for transmitting pressure waves, and at least a second transducer optimized for detecting pressure waves. The transducers can be optimised for transmitting or receiving by varying the diameter, thickness or mass of the membrane and/or electrode of each respective transducer. Various embodiments are described showing arrays of transducers, with different configurations of transmitting and receiving transducers. Embodiments are also disclosed having an array of transmitting transducers and an array of receiving transducers, wherein elements in the array of transmitting and/or receiving transducers are arranged to have different resonant frequencies. At least one of said first and second transducers may comprise an internal cavity that is sealed from the outside of the transducer.
    Type: Application
    Filed: May 7, 2009
    Publication date: March 17, 2011
    Inventors: Robert Errol McMullen, Richard Ian Laming, Anthony Bernard Traynor, Tsjerk Hans Hoekstra
  • Publication number: 20100244162
    Abstract: A MEMS device comprises a membrane layer and a back-plate layer formed over the membrane layer. The membrane layer comprises an outer portion and an inner portion raised relative to the outer portion and a sidewall for connecting the inner portion and the outer portion. The sidewall is non-orthogonal to the outer portion.
    Type: Application
    Filed: September 18, 2008
    Publication date: September 30, 2010
    Inventors: Richard Ian Laming, Colin Robert Jenkins, Anthony Bernard Traynor