Patents by Inventor Anthony C. Mulligan
Anthony C. Mulligan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12030603Abstract: A modular underwater vehicle includes a hull having a series of modular sections, defining an interior housing, a propulsor coupled to a stern of the hull, a series of control surfaces coupled to the propulsor or the stern of the hull, and a power supply, a processor, and a nonvolatile memory device in the interior housing. The nonvolatile memory device has instructions stored therein which, when executed by the processor, cause the processor to supply power from the power supply to drive the propulsor and to actuate the plurality of control surfaces. At least one modular section of the series of modular sections is detachable.Type: GrantFiled: April 24, 2020Date of Patent: July 9, 2024Inventors: Robert W. Lautrup, Anthony C. Mulligan
-
Patent number: 11987333Abstract: A modular underwater vehicle includes a hull having a series of modular sections, defining an interior housing, a propulsor coupled to a stern of the hull, a series of control surfaces coupled to the propulsor or the stern of the hull, and a power supply, a processor, and a nonvolatile memory device in the interior housing. The nonvolatile memory device has instructions stored therein which, when executed by the processor, cause the processor to supply power from the power supply to drive the propulsor and to actuate the plurality of control surfaces. At least one modular section of the series of modular sections is detachable.Type: GrantFiled: April 24, 2020Date of Patent: May 21, 2024Inventors: Robert W. Lautrup, Anthony C. Mulligan
-
Publication number: 20240092481Abstract: A propeller according to an embodiment includes a hub and a series of blades extending outward from the hub. Each blade of the series of blades includes a core and a skin covering the core. The core may be formed of a ceramic first material and the skin is formed of a second material different than the ceramic first material. The ceramic first material of the core may be ceramic Si3N4 (silicon nitride), yttria-toughened zirconia ceramic, or alumina-zirconia ceramic, and the second material of the skin may be a polymer. The polymer skin is configured to function as a shock absorber protecting the ceramic core, and the ceramic core is configured to provide rigidity to maintain the shape of the propeller blades under aerodynamic loading, which enables improved aerodynamic efficiency and reduced noise generation.Type: ApplicationFiled: September 16, 2022Publication date: March 21, 2024Inventors: Anthony C. Mulligan, Lloyd Vincent Mulligan, Jaime Lara-Martinez, Jay M. Cohen, Drey Dean Platt, Dylan Kylar Allen Gutierrez, Eva Marie Huie, Robert W. Lautrup, Ronald A. Cipriani
-
Publication number: 20220380043Abstract: An unmanned aerial system includes an unmanned aerial vehicle having a body and a primary propulsion system coupled to the body. The primary propulsion system includes at least one propeller and at least one motor coupled to the at least one propeller. The unmanned aerial system also includes a pair of landing gears coupled to the body of the unmanned aerial vehicle. Each landing gear of the pair of landing gears includes a buoyant elongated float. The unmanned aerial system also includes a SONAR device coupled to the unmanned aerial vehicle.Type: ApplicationFiled: May 25, 2021Publication date: December 1, 2022Inventors: Anthony C. Mulligan, Jaime Lara-Martinez, Drey Platt, Dylan Gutierrez, Eva Huie
-
Publication number: 20210331774Abstract: A modular underwater vehicle includes a hull having a series of modular sections, defining an interior housing, a propulsor coupled to a stern of the hull, a series of control surfaces coupled to the propulsor or the stern of the hull, and a power supply, a processor, and a nonvolatile memory device in the interior housing. The nonvolatile memory device has instructions stored therein which, when executed by the processor, cause the processor to supply power from the power supply to drive the propulsor and to actuate the plurality of control surfaces. At least one modular section of the series of modular sections is detachable.Type: ApplicationFiled: April 24, 2020Publication date: October 28, 2021Inventors: Robert W. Lautrup, Anthony C. Mulligan
-
Patent number: 8882555Abstract: A remote controlled motorized buoy is provided for rescuing people in the water. The buoy may be controlled by a person with a remote control to navigate to the person in need. The buoy may have flotation mechanisms to keep the buoy right side up in rough water conditions and includes visual indicators to help the user keep track of the buoys location, such as a flag and beacon. When the buoy is near the swimmer, the swimmer may grab the buoy and the buoy may be remotely navigated to bring the swimmer to a safe location.Type: GrantFiled: April 5, 2012Date of Patent: November 11, 2014Inventors: Anthony C. Mulligan, Robert W. Lautrup
-
Publication number: 20120276794Abstract: A remote controlled motorized buoy is provided for rescuing people in the water. The buoy may be controlled by a person with a remote control to navigate to the person in need. The buoy may have flotation mechanisms to keep the buoy right side up in rough water conditions and includes visual indicators to help the user keep track of the buoys location, such as a flag and beacon. When the buoy is near the swimmer, the swimmer may graph the buoy and the buoy may be remotely navigated to bring the swimmer to a safe location.Type: ApplicationFiled: April 5, 2012Publication date: November 1, 2012Inventors: Anthony C. Mulligan, Robert W. Lautrup
-
Patent number: 7704594Abstract: Fibrous monolith processing techniques to fabricate multifunctional structures capable of performing more than one discrete function such as structures capable of bearing structural loads and mechanical stresses in service and also capable of performing at least one additional non-structural function.Type: GrantFiled: August 11, 2004Date of Patent: April 27, 2010Assignee: Advanced Ceramics Research, Inc.Inventors: Anthony C. Mulligan, John Halloran, Dragan Popovich, Mark J. Rigali, Manish P. Sutaria, K. Ranji Vaidyanathan, Michael L. Fulcher, Kenneth L. Knittel
-
Patent number: 7517580Abstract: Fibrous monolith composites having architectures that provide increased flaw insensitivity, improved hardness, wear resistance and damage tolerance and methods of manufacture thereof are provided for use in dynamic environments to mitigate impact damage and increase wear resistance.Type: GrantFiled: December 9, 2005Date of Patent: April 14, 2009Assignee: Advanced Ceramics Research, Inc.Inventors: Anthony C. Mulligan, Mark J. Rigali, Manish P. Sutaria, Dragan Popovich, Joseph P. Halloran, Michael L. Fulcher, Randy C. Cook
-
Patent number: 7387757Abstract: Processes for mechanically fabricating two and three-dimensional fibrous monolith composites include preparing a fibrous monolith filament from a core composition of a first powder material and a boundary material of a second powder material. The filament includes a first portion of the core composition surrounded by a second portion of the boundary composition. One or more filaments are extruded through a mechanically-controlled deposition nozzle onto a working surface to create a fibrous monolith composite object. The objects may be formed directly from computer models and have complex geometries.Type: GrantFiled: June 29, 2004Date of Patent: June 17, 2008Assignee: Advanced Ceramics Research, Inc.Inventors: Anthony C. Mulligan, Mark J. Rigali, Manish P. Sutaria, Gregory J. Artz, Felix H. Gafner, K. Ranji Vaidyanathan
-
Patent number: 7299130Abstract: Methods and apparatuses provide surveillance of a convoy. At least one unmanned aerial vehicle (UAV) obtains images around the convoy's position to provide information about potential hostile activity while the UAV follows a generally curvilinear path around the convoy as instructed by one of the convoy vehicles. Path planner algorithm software is executed by the controlling convoy vehicle in which position and velocity information regarding the unmanned aerial vehicle and the convoy are processed to determine values of control variables. The determined values are sent to the unmanned aerial vehicle over a wireless communications channel. The path of the surveillance vehicle may be changed in order to provide evasive measures to avoid an attack on the surveillance vehicle by an adversary.Type: GrantFiled: December 13, 2004Date of Patent: November 20, 2007Assignee: Advanced Ceramic Research, Inc.Inventors: Anthony C. Mulligan, Christopher D. Troudt, Jason Michael K. Douglas
-
Patent number: 7063812Abstract: Methods for consolidation and densification of fibrous monolith composite structures are provided. Consolidation and densification of two- and three-dimensional fibrous monolith components having complex geometries can be achieved by pressureless sintering. The fibrous monolith composites are formed from filaments having at least a first material composition generally surrounded by a second material composition. The composites are sintered at a pressure of no more than about 30 psi to provide consolidated and densified fibrous monolith composites.Type: GrantFiled: May 24, 2004Date of Patent: June 20, 2006Assignee: Advanced Ceramics Research, Inc.Inventors: Manish P. Sutaria, Mark J. Rigali, Ronald A. Cipriani, Gregory J. Artz, Anthony C. Mulligan
-
Patent number: 6974624Abstract: Fibrous monolith composites having architectures that provide increased flaw insensitivity, improved hardness, wear resistance and damage tolerance and methods of manufacture thereof are provided for use in dynamic environments to mitigate impact damage and increase wear resistance.Type: GrantFiled: December 4, 2002Date of Patent: December 13, 2005Assignee: Advanced Ceramics Research, Inc.Inventors: Anthony C. Mulligan, Mark J. Rigali, Manish P. Sutaria, Dragan Popovich, Joseph P. Halloran, Michael L. Fulcher, Randy C. Cook
-
Patent number: 6899777Abstract: A process for continuous composite coextrusion comprising: (a) forming first a material-laden composition comprising a thermoplastic polymer and at least about 40 volume % of a ceramic or metallic particulate in a manner such that the composition has a substantially cylindrical geometry and thus can be used as a substantially cylindrical feed rod; (b) forming a hole down the symmetrical axis of the feed rod; (c) inserting the start of a continuous spool of ceramic fiber, metal fiber or carbon fiber through the hole in the feed rod; (d) extruding the feed rod and spool simultaneously to form a continuous filament consisting of a green matrix material completely surrounding a dense fiber reinforcement and said filament having an average diameter that is less than the average diameter of the feed rod; and (e) depositing the continuous filament into a desired architecture which preferably is determined from specific loading conditions of the desired object and CAD design of the object to provide a green fiber reiType: GrantFiled: January 2, 2002Date of Patent: May 31, 2005Assignee: Advanced Ceramics Research, Inc.Inventors: K. Ranji Vaidyanathan, Joseph Walish, Mark Fox, John W. Gillespie, Jr., Shridhar Yarlagadda, Michael R. Effinger, Anthony C. Mulligan, Mark J. Rigali
-
Patent number: 6847699Abstract: Fibrous monolith composites suitable for use in high temperature environments and/or harsh chemical environments are provided, along with methods of preparation thereof. The fibrous monolith composites exhibit such beneficial properties as enhanced strength, corrosion resistance, thermal shock resistance and thermal cycling tolerance.Type: GrantFiled: December 4, 2001Date of Patent: January 25, 2005Assignee: Advanced Ceramics Research, Inc.Inventors: Mark J. Rigali, Manish P. Sutaria, E. Greg Hilmas, Anthony C. Mulligan, Marlene Platero-AllRunner, Mark M. Opeka
-
Publication number: 20040238999Abstract: Processes for mechanically fabricating two and three-dimensional fibrous monolith composites include preparing a fibrous monolith filament from a core composition of a first powder material and a boundary material of a second powder material. The filament includes a first portion of the core composition surrounded by a second portion of the boundary composition. One or more filaments are extruded through a mechanically-controlled deposition nozzle onto a working surface to create a fibrous monolith composite object. The objects may be formed directly from computer models and have complex geometries.Type: ApplicationFiled: June 29, 2004Publication date: December 2, 2004Applicant: Advanced Ceramics Research, Inc.Inventors: Anthony C. Mulligan, Mark J. Rigali, Manish P. Sutaria, Gregory J. Artz, Felix H. Gafner, K. Ranji Vaidyanathan
-
Patent number: 6805946Abstract: Fibrous monolith processing techniques to fabricate multifunctional structures capable of performing more than one discrete function such as structures capable of bearing structural loads and mechanical stresses in service and also capable of performing at least one additional non-structural function.Type: GrantFiled: December 4, 2001Date of Patent: October 19, 2004Assignee: Advanced Ceramics Research, Inc.Inventors: Anthony C. Mulligan, John Halloran, Dragan Popovich, Mark J. Rigali, Manish P. Sutaria, K. Ranji Vaidyanathan, Michael L. Fulcher, Kenneth L. Knittel
-
Patent number: 6797220Abstract: Processes for mechanically fabricating two and three-dimensional fibrous monolith composites include preparing a fibrous monolith filament from a core composition of a first powder material and a boundary material of a second powder material. The filament includes a first portion of the core composition surrounded by a second portion of the boundary composition. One or more filaments are extruded through a mechanically-controlled deposition nozzle onto a working surface to create a fibrous monolith composite object. The objects may be formed directly from computer models and have complex geometries.Type: GrantFiled: December 4, 2001Date of Patent: September 28, 2004Assignee: Advanced Ceramics Research, Inc.Inventors: Anthony C. Mulligan, Mark J. Rigali, Manish P. Sutaria, Gregory J. Artz, Felix H. Gafner, K. Ranji Vaidyanathan
-
Patent number: 6740286Abstract: Methods for consolidation and densification of fibrous monolith composite structures are provided. Consolidation and densification of two- and three-dimensional fibrous monolith components having complex geometries can be achieved by pressureless sintering. The fibrous monolith composites are formed from filaments having at least a first material composition generally surrounded by a second material composition. The composites are sintered in an inert gas or nitrogen gas at a pressure of no more than about 30 psi to provide consolidated and densified fibrous monolith composites.Type: GrantFiled: December 4, 2001Date of Patent: May 25, 2004Assignee: Advanced Ceramics Research, Inc.Inventors: Manish P. Sutaria, Mark J. Rigali, Ronald A. Cipriani, Gregory J. Artz, Anthony C. Mulligan
-
Patent number: 6709737Abstract: Fibrous monolith composites having architectures that provide increased flaw insensitivity, improved hardness, wear resistance and damage tolerance and methods of manufacture thereof are provided for use in dynamic environments to mitigate impact damage and increase wear resistance.Type: GrantFiled: December 4, 2001Date of Patent: March 23, 2004Assignee: Advanced Ceramics Research, Inc.Inventors: Mark J. Rigali, Manish P. Sutaria, Anthony C. Mulligan, Dragan Popovich