Patents by Inventor Anthony C. Mulligan

Anthony C. Mulligan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12030603
    Abstract: A modular underwater vehicle includes a hull having a series of modular sections, defining an interior housing, a propulsor coupled to a stern of the hull, a series of control surfaces coupled to the propulsor or the stern of the hull, and a power supply, a processor, and a nonvolatile memory device in the interior housing. The nonvolatile memory device has instructions stored therein which, when executed by the processor, cause the processor to supply power from the power supply to drive the propulsor and to actuate the plurality of control surfaces. At least one modular section of the series of modular sections is detachable.
    Type: Grant
    Filed: April 24, 2020
    Date of Patent: July 9, 2024
    Inventors: Robert W. Lautrup, Anthony C. Mulligan
  • Patent number: 11987333
    Abstract: A modular underwater vehicle includes a hull having a series of modular sections, defining an interior housing, a propulsor coupled to a stern of the hull, a series of control surfaces coupled to the propulsor or the stern of the hull, and a power supply, a processor, and a nonvolatile memory device in the interior housing. The nonvolatile memory device has instructions stored therein which, when executed by the processor, cause the processor to supply power from the power supply to drive the propulsor and to actuate the plurality of control surfaces. At least one modular section of the series of modular sections is detachable.
    Type: Grant
    Filed: April 24, 2020
    Date of Patent: May 21, 2024
    Inventors: Robert W. Lautrup, Anthony C. Mulligan
  • Publication number: 20240092481
    Abstract: A propeller according to an embodiment includes a hub and a series of blades extending outward from the hub. Each blade of the series of blades includes a core and a skin covering the core. The core may be formed of a ceramic first material and the skin is formed of a second material different than the ceramic first material. The ceramic first material of the core may be ceramic Si3N4 (silicon nitride), yttria-toughened zirconia ceramic, or alumina-zirconia ceramic, and the second material of the skin may be a polymer. The polymer skin is configured to function as a shock absorber protecting the ceramic core, and the ceramic core is configured to provide rigidity to maintain the shape of the propeller blades under aerodynamic loading, which enables improved aerodynamic efficiency and reduced noise generation.
    Type: Application
    Filed: September 16, 2022
    Publication date: March 21, 2024
    Inventors: Anthony C. Mulligan, Lloyd Vincent Mulligan, Jaime Lara-Martinez, Jay M. Cohen, Drey Dean Platt, Dylan Kylar Allen Gutierrez, Eva Marie Huie, Robert W. Lautrup, Ronald A. Cipriani
  • Publication number: 20220380043
    Abstract: An unmanned aerial system includes an unmanned aerial vehicle having a body and a primary propulsion system coupled to the body. The primary propulsion system includes at least one propeller and at least one motor coupled to the at least one propeller. The unmanned aerial system also includes a pair of landing gears coupled to the body of the unmanned aerial vehicle. Each landing gear of the pair of landing gears includes a buoyant elongated float. The unmanned aerial system also includes a SONAR device coupled to the unmanned aerial vehicle.
    Type: Application
    Filed: May 25, 2021
    Publication date: December 1, 2022
    Inventors: Anthony C. Mulligan, Jaime Lara-Martinez, Drey Platt, Dylan Gutierrez, Eva Huie
  • Publication number: 20210331774
    Abstract: A modular underwater vehicle includes a hull having a series of modular sections, defining an interior housing, a propulsor coupled to a stern of the hull, a series of control surfaces coupled to the propulsor or the stern of the hull, and a power supply, a processor, and a nonvolatile memory device in the interior housing. The nonvolatile memory device has instructions stored therein which, when executed by the processor, cause the processor to supply power from the power supply to drive the propulsor and to actuate the plurality of control surfaces. At least one modular section of the series of modular sections is detachable.
    Type: Application
    Filed: April 24, 2020
    Publication date: October 28, 2021
    Inventors: Robert W. Lautrup, Anthony C. Mulligan
  • Patent number: 8882555
    Abstract: A remote controlled motorized buoy is provided for rescuing people in the water. The buoy may be controlled by a person with a remote control to navigate to the person in need. The buoy may have flotation mechanisms to keep the buoy right side up in rough water conditions and includes visual indicators to help the user keep track of the buoys location, such as a flag and beacon. When the buoy is near the swimmer, the swimmer may grab the buoy and the buoy may be remotely navigated to bring the swimmer to a safe location.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: November 11, 2014
    Inventors: Anthony C. Mulligan, Robert W. Lautrup
  • Publication number: 20120276794
    Abstract: A remote controlled motorized buoy is provided for rescuing people in the water. The buoy may be controlled by a person with a remote control to navigate to the person in need. The buoy may have flotation mechanisms to keep the buoy right side up in rough water conditions and includes visual indicators to help the user keep track of the buoys location, such as a flag and beacon. When the buoy is near the swimmer, the swimmer may graph the buoy and the buoy may be remotely navigated to bring the swimmer to a safe location.
    Type: Application
    Filed: April 5, 2012
    Publication date: November 1, 2012
    Inventors: Anthony C. Mulligan, Robert W. Lautrup
  • Patent number: 7704594
    Abstract: Fibrous monolith processing techniques to fabricate multifunctional structures capable of performing more than one discrete function such as structures capable of bearing structural loads and mechanical stresses in service and also capable of performing at least one additional non-structural function.
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: April 27, 2010
    Assignee: Advanced Ceramics Research, Inc.
    Inventors: Anthony C. Mulligan, John Halloran, Dragan Popovich, Mark J. Rigali, Manish P. Sutaria, K. Ranji Vaidyanathan, Michael L. Fulcher, Kenneth L. Knittel
  • Patent number: 7517580
    Abstract: Fibrous monolith composites having architectures that provide increased flaw insensitivity, improved hardness, wear resistance and damage tolerance and methods of manufacture thereof are provided for use in dynamic environments to mitigate impact damage and increase wear resistance.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: April 14, 2009
    Assignee: Advanced Ceramics Research, Inc.
    Inventors: Anthony C. Mulligan, Mark J. Rigali, Manish P. Sutaria, Dragan Popovich, Joseph P. Halloran, Michael L. Fulcher, Randy C. Cook
  • Patent number: 7387757
    Abstract: Processes for mechanically fabricating two and three-dimensional fibrous monolith composites include preparing a fibrous monolith filament from a core composition of a first powder material and a boundary material of a second powder material. The filament includes a first portion of the core composition surrounded by a second portion of the boundary composition. One or more filaments are extruded through a mechanically-controlled deposition nozzle onto a working surface to create a fibrous monolith composite object. The objects may be formed directly from computer models and have complex geometries.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: June 17, 2008
    Assignee: Advanced Ceramics Research, Inc.
    Inventors: Anthony C. Mulligan, Mark J. Rigali, Manish P. Sutaria, Gregory J. Artz, Felix H. Gafner, K. Ranji Vaidyanathan
  • Patent number: 7299130
    Abstract: Methods and apparatuses provide surveillance of a convoy. At least one unmanned aerial vehicle (UAV) obtains images around the convoy's position to provide information about potential hostile activity while the UAV follows a generally curvilinear path around the convoy as instructed by one of the convoy vehicles. Path planner algorithm software is executed by the controlling convoy vehicle in which position and velocity information regarding the unmanned aerial vehicle and the convoy are processed to determine values of control variables. The determined values are sent to the unmanned aerial vehicle over a wireless communications channel. The path of the surveillance vehicle may be changed in order to provide evasive measures to avoid an attack on the surveillance vehicle by an adversary.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: November 20, 2007
    Assignee: Advanced Ceramic Research, Inc.
    Inventors: Anthony C. Mulligan, Christopher D. Troudt, Jason Michael K. Douglas
  • Patent number: 7063812
    Abstract: Methods for consolidation and densification of fibrous monolith composite structures are provided. Consolidation and densification of two- and three-dimensional fibrous monolith components having complex geometries can be achieved by pressureless sintering. The fibrous monolith composites are formed from filaments having at least a first material composition generally surrounded by a second material composition. The composites are sintered at a pressure of no more than about 30 psi to provide consolidated and densified fibrous monolith composites.
    Type: Grant
    Filed: May 24, 2004
    Date of Patent: June 20, 2006
    Assignee: Advanced Ceramics Research, Inc.
    Inventors: Manish P. Sutaria, Mark J. Rigali, Ronald A. Cipriani, Gregory J. Artz, Anthony C. Mulligan
  • Patent number: 6974624
    Abstract: Fibrous monolith composites having architectures that provide increased flaw insensitivity, improved hardness, wear resistance and damage tolerance and methods of manufacture thereof are provided for use in dynamic environments to mitigate impact damage and increase wear resistance.
    Type: Grant
    Filed: December 4, 2002
    Date of Patent: December 13, 2005
    Assignee: Advanced Ceramics Research, Inc.
    Inventors: Anthony C. Mulligan, Mark J. Rigali, Manish P. Sutaria, Dragan Popovich, Joseph P. Halloran, Michael L. Fulcher, Randy C. Cook
  • Patent number: 6899777
    Abstract: A process for continuous composite coextrusion comprising: (a) forming first a material-laden composition comprising a thermoplastic polymer and at least about 40 volume % of a ceramic or metallic particulate in a manner such that the composition has a substantially cylindrical geometry and thus can be used as a substantially cylindrical feed rod; (b) forming a hole down the symmetrical axis of the feed rod; (c) inserting the start of a continuous spool of ceramic fiber, metal fiber or carbon fiber through the hole in the feed rod; (d) extruding the feed rod and spool simultaneously to form a continuous filament consisting of a green matrix material completely surrounding a dense fiber reinforcement and said filament having an average diameter that is less than the average diameter of the feed rod; and (e) depositing the continuous filament into a desired architecture which preferably is determined from specific loading conditions of the desired object and CAD design of the object to provide a green fiber rei
    Type: Grant
    Filed: January 2, 2002
    Date of Patent: May 31, 2005
    Assignee: Advanced Ceramics Research, Inc.
    Inventors: K. Ranji Vaidyanathan, Joseph Walish, Mark Fox, John W. Gillespie, Jr., Shridhar Yarlagadda, Michael R. Effinger, Anthony C. Mulligan, Mark J. Rigali
  • Patent number: 6847699
    Abstract: Fibrous monolith composites suitable for use in high temperature environments and/or harsh chemical environments are provided, along with methods of preparation thereof. The fibrous monolith composites exhibit such beneficial properties as enhanced strength, corrosion resistance, thermal shock resistance and thermal cycling tolerance.
    Type: Grant
    Filed: December 4, 2001
    Date of Patent: January 25, 2005
    Assignee: Advanced Ceramics Research, Inc.
    Inventors: Mark J. Rigali, Manish P. Sutaria, E. Greg Hilmas, Anthony C. Mulligan, Marlene Platero-AllRunner, Mark M. Opeka
  • Publication number: 20040238999
    Abstract: Processes for mechanically fabricating two and three-dimensional fibrous monolith composites include preparing a fibrous monolith filament from a core composition of a first powder material and a boundary material of a second powder material. The filament includes a first portion of the core composition surrounded by a second portion of the boundary composition. One or more filaments are extruded through a mechanically-controlled deposition nozzle onto a working surface to create a fibrous monolith composite object. The objects may be formed directly from computer models and have complex geometries.
    Type: Application
    Filed: June 29, 2004
    Publication date: December 2, 2004
    Applicant: Advanced Ceramics Research, Inc.
    Inventors: Anthony C. Mulligan, Mark J. Rigali, Manish P. Sutaria, Gregory J. Artz, Felix H. Gafner, K. Ranji Vaidyanathan
  • Patent number: 6805946
    Abstract: Fibrous monolith processing techniques to fabricate multifunctional structures capable of performing more than one discrete function such as structures capable of bearing structural loads and mechanical stresses in service and also capable of performing at least one additional non-structural function.
    Type: Grant
    Filed: December 4, 2001
    Date of Patent: October 19, 2004
    Assignee: Advanced Ceramics Research, Inc.
    Inventors: Anthony C. Mulligan, John Halloran, Dragan Popovich, Mark J. Rigali, Manish P. Sutaria, K. Ranji Vaidyanathan, Michael L. Fulcher, Kenneth L. Knittel
  • Patent number: 6797220
    Abstract: Processes for mechanically fabricating two and three-dimensional fibrous monolith composites include preparing a fibrous monolith filament from a core composition of a first powder material and a boundary material of a second powder material. The filament includes a first portion of the core composition surrounded by a second portion of the boundary composition. One or more filaments are extruded through a mechanically-controlled deposition nozzle onto a working surface to create a fibrous monolith composite object. The objects may be formed directly from computer models and have complex geometries.
    Type: Grant
    Filed: December 4, 2001
    Date of Patent: September 28, 2004
    Assignee: Advanced Ceramics Research, Inc.
    Inventors: Anthony C. Mulligan, Mark J. Rigali, Manish P. Sutaria, Gregory J. Artz, Felix H. Gafner, K. Ranji Vaidyanathan
  • Patent number: 6740286
    Abstract: Methods for consolidation and densification of fibrous monolith composite structures are provided. Consolidation and densification of two- and three-dimensional fibrous monolith components having complex geometries can be achieved by pressureless sintering. The fibrous monolith composites are formed from filaments having at least a first material composition generally surrounded by a second material composition. The composites are sintered in an inert gas or nitrogen gas at a pressure of no more than about 30 psi to provide consolidated and densified fibrous monolith composites.
    Type: Grant
    Filed: December 4, 2001
    Date of Patent: May 25, 2004
    Assignee: Advanced Ceramics Research, Inc.
    Inventors: Manish P. Sutaria, Mark J. Rigali, Ronald A. Cipriani, Gregory J. Artz, Anthony C. Mulligan
  • Patent number: 6709737
    Abstract: Fibrous monolith composites having architectures that provide increased flaw insensitivity, improved hardness, wear resistance and damage tolerance and methods of manufacture thereof are provided for use in dynamic environments to mitigate impact damage and increase wear resistance.
    Type: Grant
    Filed: December 4, 2001
    Date of Patent: March 23, 2004
    Assignee: Advanced Ceramics Research, Inc.
    Inventors: Mark J. Rigali, Manish P. Sutaria, Anthony C. Mulligan, Dragan Popovich