Patents by Inventor Anthony C. Sutorik

Anthony C. Sutorik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7687401
    Abstract: The present invention provides substantially spherical composite ceria/titania particles, a method of forming the same, and chemical mechanical polishing compositions comprising such particles. The substantially spherical particles include a substantially crystalline core portion including one or more crystallites having a cubic lattice structure including Ce(1-x)Ti(x)O2, where x is <0.25, and a substantially amorphous cladding covering at least a portion of the substantially crystalline core portion, the substantially amorphous cladding including Ti(1-y)Ce(y)O2, where y is ?0.50. The method of forming the particles includes combusting an organic solvent including a cerium salt of a carboxylic acid and a titanium (IV) chelate in a combustion supporting gas and collecting agglomerates comprising two or more substantially spherical particles.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: March 30, 2010
    Assignees: Ferro Corporation, Nanocerox, Inc.
    Inventors: Xiangdong Feng, Yie-Shein Her, Anthony C. Sutorik, M. Sharon Paras
  • Publication number: 20100048378
    Abstract: A transparent yttrium aluminum garnet precursor composition is provided that includes a plurality of calcined particles of yttrium aluminum oxide having a mean particle domain size of between 10 and 200 nanometers and a predominant hexagonal crystal structure. High levels of YAG transparency are obtained for large YAG articles through control of the aluminum:yttrium atomic ratio to 1:06±0.001 and limiting impurity loadings to less than 100 ppm. The composition is calcined at a temperature between 700° Celsius and 900° Celsius to remove organic additives to yield a predominant metastable hexagonal phase yttrium aluminum oxide nanoparticulate having an atomic ratio of aluminum: yttrium of 1:0.6±0.001. With dispersion in an organic binder and a translucent YAG article is formed having a transmittance at a wavelength of 1064 nanometers of greater than 75%.
    Type: Application
    Filed: April 24, 2008
    Publication date: February 25, 2010
    Applicant: NANOCEROX, INC.
    Inventors: Yin Tang, Anthony C. Sutorik, Long Nguyen, Lizhi Liu, Chris Zyskowski
  • Patent number: 7592281
    Abstract: A composition is provided that includes a plurality of calcined particles of terbium aluminum oxide having a mean particle domain size of between 30 and 600 nanometers. A translucent article having a surface includes polycrystalline terbium aluminum garnet having a mean grain size from 1 to 10 microns and light scattering inclusions of aluminum-rich oxide and/or terbium-rich oxide that are present at less than 2 surface area percent of the surface. A process for forming such an article involves sintering the above provided composition at a temperature between 1500° C. and 1700° C. to yield a sintered article. The article has improved translucency and even transparency as sintering is performed under vacuum at a temperature between 1610° C. and 1680° C. Hot isostatic pressing alone or in combination with article polishing also improves article translucency.
    Type: Grant
    Filed: September 15, 2008
    Date of Patent: September 22, 2009
    Assignee: Nanocerox, Inc.
    Inventors: Yin Tang, Anthony C. Sutorik, Long Nguyen, Tom Hinklin, William H. Rhodes, David Scerbak
  • Publication number: 20090011924
    Abstract: A composition is provided that includes a plurality of calcined particles of terbium aluminum oxide having a mean particle domain size of between 30 and 600 nanometers. A translucent article having a surface includes polycrystalline terbium aluminum garnet having a mean grain size from 1 to 10 microns and light scattering inclusions of aluminum-rich oxide and/or terbium-rich oxide that are present at less than 2 surface area percent of the surface. A process for forming such an article involves sintering the above provided composition at a temperature between 1500° C. and 1700° C. to yield a sintered article. The article has improved translucency and even transparency as sintering is performed under vacuum at a temperature between 1610° C. and 1680° C. Hot isostatic pressing alone or in combination with article polishing also improves article translucency.
    Type: Application
    Filed: September 15, 2008
    Publication date: January 8, 2009
    Inventors: Yin Tang, Anthony C. Sutorik, Long Nguyen, Tom Hinklin, William H. Rhodes, David Scerbak
  • Patent number: 7427577
    Abstract: A composition is provided that includes a plurality of calcined particles of terbium aluminum oxide having a mean particle domain size of between 30 and 600 nanometers. A translucent article having a surface includes polycrystalline terbium aluminum garnet having a mean grain size from 1 to 10 microns and light scattering inclusions of aluminum-rich oxide and/or terbium-rich oxide that are present at less than 2 surface area percent of the surface. A process for forming such an article involves sintering the above provided composition at a temperature between 1500° C. and 1700° C. to yield a sintered article. The article has improved translucency and even transparency as sintering is performed under vacuum at a temperature between 1610° C. and 1680° C. Hot isostatic pressing alone or in combination with article polishing also improves article translucency.
    Type: Grant
    Filed: April 6, 2006
    Date of Patent: September 23, 2008
    Inventors: Yin Tang, Anthony C. Sutorik, Long Nguyen, Tom Hinklin, William H. Rhodes, David Scerbak
  • Patent number: 7220398
    Abstract: Liquid feed flame spray pyrolysis of solutions of a metal oxide precursor which is an alkoxide or C1-6 carboxylate and at least one second metal oxide precursor and/or second metal compound dissolved in oxygenated solvent by combustion with oxygen lead to the formation of sub-micron mixed-metal oxide powders not accessible by other processes or by the pyrolysis of metal chlorides or nitrates. The powders have numerous uses in advanced materials applications including particulate solid state lasers, advanced ceramic materials, and as catalysts in organic synthesis and automobile exhaust systems.
    Type: Grant
    Filed: February 19, 2003
    Date of Patent: May 22, 2007
    Assignee: TAL Materials & The Regents of the University of Michigan
    Inventors: Anthony C. Sutorik, Richard M. Laine, Julien Marchal, Tyrone Johns, Thomas Hinklin