Patents by Inventor Anthony Dip

Anthony Dip has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170236719
    Abstract: Embodiments of the invention describe a method and apparatus for multi-film deposition and etching in a batch processing system. According to one embodiment, the method includes arranging the substrates on a plurality of substrate supports in a process chamber, where the process chamber contains processing spaces defined around an axis of rotation in the process chamber, rotating the plurality of substrate supports about the axis of rotation, depositing a first film on a patterned film on each of the substrates by atomic layer deposition, and etching a portion of the first film on each of the substrates, where etching a portion of the first film includes removing at least one horizontal portion of the first film while substantially leaving vertical portions of the first film. The method further includes repeating the depositing and etching steps for a second film that contains a different material than the first film.
    Type: Application
    Filed: February 9, 2017
    Publication date: August 17, 2017
    Inventors: David L. O'Meara, Anthony Dip
  • Patent number: 8673725
    Abstract: A semiconducting device with a multilayer sidewall spacer and method of forming are described. In one embodiment, the method includes providing a substrate containing a patterned structure on a surface of the substrate and depositing a first spacer layer over the patterned structure at a first substrate temperature, where the first spacer layer contains a first material. The method further includes depositing a second spacer layer over the patterned substrate at a second substrate temperature that is different from the first substrate temperature, where the first and second materials contain the same chemical elements, and the depositing steps are performed in any order. The first and second spacer layers are then etched to form the multilayer sidewall spacer on the patterned structure.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: March 18, 2014
    Assignees: Tokyo Electron Limited, International Business Machines Corporation
    Inventors: David L. O'Meara, Anthony Dip, Aelan Mosden, Pao-Hwa Chou, Richard A Conti
  • Patent number: 8664102
    Abstract: A semiconducting device with a dual sidewall spacer and method of forming are provided. The method includes: depositing a first spacer layer over a patterned structure, the first spacer layer having a seam propagating through a thickness of the first spacer layer near an interface region of a surface of the substrate and a sidewall of the patterned structure, etching the first spacer layer to form a residual spacer at the interface region, where the residual spacer coats less than the entirety of the sidewall of the patterned structure, depositing a second spacer layer on the residual spacer and on the sidewall of the patterned structure not coated by the residual spacer, the second spacer layer being seam-free on the seam of the residual spacer, and etching the second spacer layer to form a second spacer coating the residual spacer and coating the sidewall of the patterned structure not coated by the residual spacer.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: March 4, 2014
    Assignees: Tokyo Electron Limited, International Business Machines Corporation
    Inventors: David L. O'Meara, Anthony Dip, Aelan Mosden, Pao-Hwa Chou, Richard A Conti
  • Publication number: 20130251904
    Abstract: A disclosed film deposition apparatus includes a turntable having in one surface a substrate receiving portion along a turntable rotation direction; a first reaction gas supplying portion for supplying a first reaction gas; a second reaction gas supplying portion for supplying a second reaction gas; a separation area between a first process area where the first reaction gas is supplied and a second process area where the second reaction gas is supplied, the separation area including a separation gas supplying portion for supplying a first separation gas in the separation area, and a ceiling surface opposing the one surface to produce a thin space; a center area having an ejection hole for ejecting a second separation gas along the one surface; and an evacuation opening for evacuating the chamber.
    Type: Application
    Filed: May 20, 2013
    Publication date: September 26, 2013
    Applicant: Tokyo Electron Limited
    Inventors: Hitoshi KATO, Manabu Honma, Anthony Dip
  • Patent number: 8465591
    Abstract: A disclosed film deposition apparatus includes a turntable having in one surface a substrate receiving portion along a turntable rotation direction; a first reaction gas supplying portion for supplying a first reaction gas; a second reaction gas supplying portion for supplying a second reaction gas; a separation area between a first process area where the first reaction gas is supplied and a second process area where the second reaction gas is supplied, the separation area including a separation gas supplying portion for supplying a first separation gas in the separation area, and a ceiling surface opposing the one surface to produce a thin space; a center area having an ejection hole for ejecting a second separation gas along the one surface; and an evacuation opening for evacuating the chamber.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: June 18, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Hitoshi Kato, Manabu Honma, Anthony Dip
  • Patent number: 8466045
    Abstract: A method for forming strained epitaxial carbon-doped silicon (Si) films, for example as raised source and drain regions for electronic devices. The method includes providing a structure having an epitaxial Si surface and a patterned film, non-selectively depositing a carbon-doped Si film onto the structure, the carbon-doped Si film containing an epitaxial carbon-doped Si film deposited onto the epitaxial Si surface and a non-epitaxial carbon-doped Si film deposited onto the patterned film, and non-selectively depositing a Si film on the carbon-doped Si film, the Si film containing an epitaxial Si film deposited onto the epitaxial carbon-doped Si film and a non-epitaxial Si film deposited onto the non-epitaxial carbon-doped Si film. The method further includes dry etching away the non-epitaxial Si film, the non-epitaxial carbon-doped Si film, and less than the entire epitaxial Si film to form a strained epitaxial carbon-doped Si film on the epitaxial Si surface.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: June 18, 2013
    Assignee: Tokyo Electron Limited
    Inventors: John Gumpher, Seungho Oh, Anthony Dip
  • Patent number: 8465592
    Abstract: A disclosed film deposition apparatus includes a turntable having in one surface a substrate receiving portion along a turntable rotation direction; a first reaction gas supplying portion for supplying a first reaction gas; a second reaction gas supplying portion for supplying a second reaction gas; a separation area between a first process area where the first reaction gas is supplied and a second process area where the second reaction gas is supplied, the separation area including a separation gas supplying portion for supplying a first separation gas in the separation area, and a ceiling surface opposing the one surface to produce a thin space; a center area having an ejection hole for ejecting a second separation gas along the one surface; and an evacuation opening for evacuating the chamber.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: June 18, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Hitoshi Kato, Manabu Honma, Anthony Dip
  • Patent number: 8263474
    Abstract: A method is provided for reduced defect such as void free or reduced void Si or SiGe deposition in a micro-feature on a patterned substrate. The micro-feature includes a sidewall and the patterned substrate contains an isolation layer on the field area and on the sidewall and bottom of the micro-feature. The method includes forming a Si or SiGe seed layer at the bottom of the micro-feature, and at least partially filling the micro-feature from the bottom up by selectively growing Si or SiGe onto the Si or SiGe seed layer. According to one embodiment, the Si or SiGe seed layer is formed by depositing a conformal Si or SiGe layer onto the patterned substrate, removing the Si or SiGe layer from the field area, heat treating the Si or SiGe layer in the presence of H2 gas to transfer at least a portion of the Si or SiGe layer from the sidewall to the bottom of the micro-feature, and etching Si or SiGe residue from the field area and the sidewall.
    Type: Grant
    Filed: January 11, 2007
    Date of Patent: September 11, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Anthony Dip, John Gumpher, Allen John Leith, Seungho Oh
  • Publication number: 20120003825
    Abstract: A method for forming strained epitaxial carbon-doped silicon (Si) films, for example as raised source and drain regions for electronic devices. The method includes providing a structure having an epitaxial Si surface and a patterned film, non-selectively depositing a carbon-doped Si film onto the structure, the carbon-doped Si film containing an epitaxial carbon-doped Si film deposited onto the epitaxial Si surface and a non-epitaxial carbon-doped Si film deposited onto the patterned film, and non-selectively depositing a Si film on the carbon-doped Si film, the Si film containing an epitaxial Si film deposited onto the epitaxial carbon-doped Si film and a non-epitaxial Si film deposited onto the non-epitaxial carbon-doped Si film. The method further includes dry etching away the non-epitaxial Si film, the non-epitaxial carbon-doped Si film, and less than the entire epitaxial Si film to form a strained epitaxial carbon-doped Si film on the epitaxial Si surface.
    Type: Application
    Filed: July 2, 2010
    Publication date: January 5, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventor: Anthony Dip
  • Patent number: 8043432
    Abstract: Systems and methods for depositing thin films using Atomic Layer Deposition (ALD). The deposition system includes a process chamber with a peripheral sidewall, partitions that divide a processing space inside the process chamber into at least first and second compartments, and a platter that supports substrates within the processing space. The platter rotates the substrates relative to the stationary peripheral sidewall and compartments. The first compartment receives a process material used to deposit a layer on each of the substrates. An injector, which injects the process material, communicates with the first compartment through the peripheral sidewall.
    Type: Grant
    Filed: February 12, 2007
    Date of Patent: October 25, 2011
    Assignee: Tokyo Electron Limited
    Inventor: Anthony Dip
  • Publication number: 20110241085
    Abstract: A semiconducting device with a dual sidewall spacer and method of forming are provided. The method includes: depositing a first spacer layer over a patterned structure, the first spacer layer having a seam propagating through a thickness of the first spacer layer near an interface region of a surface of the substrate and a sidewall of the patterned structure, etching the first spacer layer to form a residual spacer at the interface region, where the residual spacer coats less than the entirety of the sidewall of the patterned structure, depositing a second spacer layer on the residual spacer and on the sidewall of the patterned structure not coated by the residual spacer, the second spacer layer being seam-free on the seam of the residual spacer, and etching the second spacer layer to form a second spacer coating the residual spacer and coating the sidewall of the patterned structure not coated by the residual spacer.
    Type: Application
    Filed: March 31, 2010
    Publication date: October 6, 2011
    Applicants: TOKYO ELECTRON LIMITED, INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: David L. O'Meara, Anthony Dip, Aelan Mosden, Pao-Hwa Chou, Richard A. Conti
  • Publication number: 20110241128
    Abstract: A semiconducting device with a multilayer sidewall spacer and method of forming are described. In one embodiment, the method includes providing a substrate containing a patterned structure on a surface of the substrate and depositing a first spacer layer over the patterned structure at a first substrate temperature, where the first spacer layer contains a first material. The method further includes depositing a second spacer layer over the patterned substrate at a second substrate temperature that is different from the first substrate temperature, where the first and second materials contain the same chemical elements, and the depositing steps are performed in any order. The first and second spacer layers are then etched to form the multilayer sidewall spacer on the patterned structure.
    Type: Application
    Filed: March 31, 2010
    Publication date: October 6, 2011
    Applicants: TOKYO ELECTRON LIMITED, INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: David L. O'Meara, Anthony Dip, Aelan Mosden, Pao-Hwa Chou, Richard A. Conti
  • Patent number: 7994070
    Abstract: A method for depositing a dielectric film on a substrate includes positioning a plurality of substrates in a process chamber, heating the process chamber to a deposition temperature between 400° C. and less than 650° C., flowing a first process gas comprising water vapor into the process chamber, flowing a second process gas comprising dichlorosilane (DCS) into the process chamber, establishing a gas pressure of less than 2 Torr, and reacting the first and second process gases to thermally deposit a silicon oxide film on the plurality of substrates. One embodiment further includes flowing a third process gas comprising nitric oxide (NO) gas into the process chamber while flowing the first process gas and the second process gas; and reacting the oxide film with the third process gas to form a silicon oxynitride film on the substrate.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: August 9, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Anthony Dip, Kimberly G Reid
  • Publication number: 20110151122
    Abstract: A disclosed film deposition apparatus includes a turntable having in one surface a substrate receiving portion along a turntable rotation direction; a first reaction gas supplying portion for supplying a first reaction gas; a second reaction gas supplying portion for supplying a second reaction gas; a separation area between a first process area where the first reaction gas is supplied and a second process area where the second reaction gas is supplied, the separation area including a separation gas supplying portion for supplying a first separation gas in the separation area, and a ceiling surface opposing the one surface to produce a thin space; a center area having an ejection hole for ejecting a second separation gas along the one surface; and an evacuation opening for evacuating the chamber.
    Type: Application
    Filed: February 25, 2011
    Publication date: June 23, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: HITOSHI KATO, Manabu Honma, Anthony Dip
  • Patent number: 7910494
    Abstract: A gas delivery system for supplying a process gas from a gas supply to a thermal processing furnace, a thermal processing furnace equipped with the gas delivery system, and methods for delivering process gas to a thermal processing furnace. The gas delivery system comprises a plurality of regulators, such as mass flow controllers, in a process gas manifold coupling a gas supply with a thermal processing furnace. The regulators establish a corresponding plurality of flows of a process gas at a plurality of flow rates communicated by the process gas manifold to the thermal processing furnace. The gas delivery system may be a component of the thermal processing furnace that further includes a liner that surrounds a processing space inside the thermal processing furnace.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: March 22, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Anthony Dip, Eric J. Malstrom
  • Patent number: 7816278
    Abstract: An in-situ hybrid film deposition method for forming a high-k dielectric film on a plurality of substrates in a batch processing system. The method includes loading the plurality of substrates into a process chamber of the batch processing system, depositing by atomic layer deposition (ALD) a first portion of a high-k dielectric film on the plurality of substrates, after depositing the first portion, and without removing the plurality of substrates from the process chamber, depositing by chemical vapor deposition (CVD) a second portion of the high-k dielectric film on the first portion, and removing the plurality of substrates from the process chamber. The method can further include alternatingly repeating the deposition of the first and second portions until the high-k dielectric film has a desired thickness. The method can still further include pre-treating the substrates and post-treating the high-k dielectric film in-situ prior to the removing.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: October 19, 2010
    Assignee: Tokyo Electron Limited
    Inventors: Kimberly G. Reid, Anthony Dip
  • Patent number: 7776763
    Abstract: A method is provided for in-situ formation of a thin oxidized AlN film on a substrate. The method includes providing the substrate in a process chamber, depositing an AlN film on the substrate, and post-treating the AlN film with exposure to a nitrogen and oxygen-containing gas. The post-treating increases the dielectric constant of the AlN film with substantially no increase in the AlN film thickness. The method can also include pre-treating the substrate prior to AlN deposition, post-annealing the AlN film before or after the post-treatment, or both.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: August 17, 2010
    Assignee: Tokyo Electron Limited
    Inventors: Kimberly G. Reid, Anthony Dip
  • Patent number: 7737051
    Abstract: A method for using a silicon germanium (SiGe) surface layer to integrate a high-k dielectric layer into a semiconductor device. The method forms a SiGe surface layer on a substrate and deposits a high-k dielectric layer on the SiGe surface layer. An oxide layer, located between the high-k dielectric layer and an unreacted portion of the SiGe surface layer, is formed during one or both of deposition of the high-k dielectric layer and an annealing process after deposition of the high-k dielectric layer. The method further includes forming an electrode layer on the high-k dielectric layer.
    Type: Grant
    Filed: March 10, 2004
    Date of Patent: June 15, 2010
    Assignee: Tokyo Electron Limited
    Inventors: Anthony Dip, Pradip K. Roy, Sanjeev Kaushal, Allen J. Leith, Seungho Oh, Raymond Joe
  • Patent number: 7659214
    Abstract: A method for growing an oxynitride film on a substrate includes positioning the substrate in a process chamber, heating the process chamber, flowing a first wet process gas comprising water vapor into the process chamber, and reacting the substrate with the first wet process gas to grow an oxide film on the substrate. The method further includes flowing a second wet process gas comprising water vapor and a nitriding gas comprising nitric oxide into the process chamber, and reacting the oxide film and the substrate with the second wet process gas to grow an oxynitride film. In another embodiment, the method further comprises annealing the substrate containing the oxynitride film in an annealing gas. According to one embodiment of the method where the substrate is silicon, a silicon oxynitride film can be formed that exhibits a nitrogen peak concentration of approximately 3 atomic % or greater.
    Type: Grant
    Filed: September 30, 2007
    Date of Patent: February 9, 2010
    Assignee: Tokyo Electron Limited
    Inventors: Kimberly G. Reid, Anthony Dip
  • Publication number: 20090324828
    Abstract: A disclosed film deposition apparatus includes a turntable having in one surface a substrate receiving portion along a turntable rotation direction; a first reaction gas supplying portion for supplying a first reaction gas; a second reaction gas supplying portion for supplying a second reaction gas; a separation area between a first process area where the first reaction gas is supplied and a second process area where the second reaction gas is supplied, the separation area including a separation gas supplying portion for supplying a first separation gas in the separation area, and a ceiling surface opposing the one surface to produce a thin space; a center area having an ejection hole for ejecting a second separation gas along the one surface; and an evacuation opening for evacuating the chamber.
    Type: Application
    Filed: June 25, 2009
    Publication date: December 31, 2009
    Inventors: HITOSHI KATO, Manabu Honma, Anthony Dip