Patents by Inventor Anthony F. Volpe

Anthony F. Volpe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7615509
    Abstract: Supported metallic catalysts comprised of a Group VIII metal, a Group VIB metal, and an organic additive, and methods for synthesizing supported metallic catalysts are provided. The catalysts are prepared by a method wherein precursors of both metals are mixed and interacted with at least one organic additive, dried, calcined, and sulfided. The catalysts are used for hydroprocessing, particularly hydrodesulfurization and hydrodenitrogenation, of hydrocarbon feedstocks.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: November 10, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Chuansheng Bai, EL-Mekki El-Malki, Jeff Elks, Zhiguo Hou, Jon M. McConnachie, Pallassana S. Venkataraman, Jason Wu, Peter W. Jacobs, Jun Han, Daniel M. Giaquinta, Alfred Hagemeyer, Valery Sokolovskii, Anthony F. Volpe, Jr., David M. Lowe
  • Publication number: 20090176643
    Abstract: Catalysts for dewaxing of hydrocarbon feeds, particularly feeds with elevated sulfur and nitrogen levels, are provided. The dewaxing catalysts include a zeolite with a low silica to alumina ratio combined with a low surface binder, or alternatively the formulated catalyst has a high ratio of zeolite surface area to external surface area.
    Type: Application
    Filed: December 18, 2008
    Publication date: July 9, 2009
    Inventors: Christine N. Elia, Mohan Kalyanaraman, Michel A. Daage, Stephen H. Brown, Lei Zhang, Robert A. Crane, Valery Sokolovskii, David M. Lowe, Jun Han, Nicholas Ohler, Daniel M. Giaquinta, Anthony F. Volpe, JR.
  • Patent number: 7550637
    Abstract: A selective hydrogenation catalyst composition comprises at least two different metal components selected from Groups 8 to 10 of the Periodic Table of Elements, one of which may be rhodium, and at least one metal component selected from Group 13 of the Periodic Table of Elements, such as indium.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: June 23, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: David M. Lowe, Michel Molinier, John D. Y. Ou, Michael A. Risch, Anthony F. Volpe, Jr., Jeffrey C. Yoder
  • Publication number: 20090111959
    Abstract: A crystalline material has a DDR framework type and, in its calcined, anhydrous form, has a composition involving the molar relationship: (n)X2O3:YO2, wherein X is a trivalent element, Y is a tetravalent element and n is from 0 to less than 0.01 and wherein the crystals of said material have an average diameter less than or equal to 2 microns. The material is synthesized in the presence of an N-ethyltropanium compound as directing agent.
    Type: Application
    Filed: November 14, 2006
    Publication date: April 30, 2009
    Inventors: Guang Cao, Machteld Maria Mertens, Karl G. Strohmaier, Hailian Li, Robert J. Saxton, Anil S. Guram, Jeffrey C. Yoder, Mark T. Muraoka, Anthony F. Volpe, JR.
  • Patent number: 7503515
    Abstract: Methods and apparatus for combinatorial (i.e., high-throughput) materials research, such as catalysis research, that involves parallel apparatus for simultaneously effecting mechanical treatments such as grinding, mixing, pressing, crushing, sieving, and/or fractionating of such materials are disclosed. The methods and apparatus are useful for mechanically treating catalysis materials and other solid materials, including without limitation, electronic materials such as phosphors, colorants such as pigments, and pharmaceuticals such as crystalline drugs or drug candidates. The simultaneous protocols and parallel apparatus offer substantial improvements in overall throughput for preparing arrays of materials, such as catalysis materials.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: March 17, 2009
    Assignee: Symyx Technologies, Inc.
    Inventors: Claus G. Lugmair, Alfred Hagemeyer, Lynn Van Erden, Anthony F. Volpe, Jr., David M. Lowe, Yumin Liu
  • Patent number: 7462751
    Abstract: A selective hydrogenation catalyst composition comprises a support; a first metal component comprising rhodium; and a second metal component comprising a metal other than rhodium and selected from Groups 1 to 15 of the Periodic Table of Elements, wherein said first and second components are predominantly contained in an outer surface layer of the support having a depth of not more than 1000 microns.
    Type: Grant
    Filed: August 26, 2005
    Date of Patent: December 9, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: David M. Lowe, Michel Molinier, John D. Y. Ou, Michael A. Risch, Anthony F. Volpe, Jr., Jeffrey C. Yoder, Valery Sokolovskii
  • Publication number: 20080233039
    Abstract: The present invention is directed to carbon monoxide oxidation reactions in the presence of an O2 containing gas, nitrogen oxide conversion reactions, volatile organic compound conversion reactions in the presence of an O2 containing gas, and combinations thereof, and catalysts for use in those reactions. The catalyst comprises cobalt, its oxides or mixtures thereof and ruthenium, its oxides or mixtures thereof.
    Type: Application
    Filed: June 1, 2006
    Publication date: September 25, 2008
    Applicant: SYMYX TECHNOLOGIES, INC.
    Inventors: Alfred Hagemeyer, Anthony F. Volpe, Valery Sokolovskii, Andreas Lesik, Guido Streukens
  • Publication number: 20080146438
    Abstract: Supported metallic catalysts comprised of a Group VIII metal, a Group VIB metal, and an organic additive, and methods for synthesizing supported metallic catalysts are provided. The catalysts are prepared by a method wherein precursors of both metals are mixed and interacted with at least one organic additive, dried, calcined, and sulfided. The catalysts are used for hydroprocessing, particularly hydrodesulfurization and hydrodenitrogenation, of hydrocarbon feedstocks.
    Type: Application
    Filed: October 11, 2007
    Publication date: June 19, 2008
    Inventors: Chuangsheng Bai, EL-Mekki El-Malki, Jeff Elks, Zhiguo Hou, Jon M. McConnachie, Pallassana S. Venkataraman, Jason Wu, Peter W. Jacobs, Jun Han, Daniel M. Giaquinta, Alfred Hagemeyer, Valery Sokolovskii, Anthony F. Volpe, David M. Lowe
  • Publication number: 20080132407
    Abstract: Bulk metallic catalysts comprised of a Group VIII metal and a Group VIB metal and methods for synthesizing bulk metallic catalysts are provided. The catalysts are prepared by a method wherein precursors of both metals are mixed and interacted with at least one organic acid, such as glyoxylic acid, dried, calcined, and sulfided. The catalysts are used for hydroprocessing, particularly hydrodesulfurization and hydrodenitrogenation, of hydrocarbon feedstocks.
    Type: Application
    Filed: October 9, 2007
    Publication date: June 5, 2008
    Inventors: Chuansheng Bai, El-Mekki El-Malki, Jeff Elks, Zhiguo Hou, Jon M. McConnachie, Pallassana S. Venkataraman, Jason Wu, Jun Han, Daniel Giaquinta, Alfred Hagemeyer, Valery Sokolovskii, Anthony F. Volpe, David Michael Lowe
  • Publication number: 20080103325
    Abstract: A catalyst composition comprising molybdenum, vanadium, antimony niobium, at least one element select from the group consisting of titanium, tin, germanium, zirconium, and hafnium, and at least one lanthanide selected from the group consisting of lanthanum, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium; with the proviso that catalyst contains germanium (in the absence of at last one of titanium, tin, zirconium, hafnium) only in combination with neodymium and/or praseodymium and no other lanthanides. Such catalyst compositions are effective for the gas-phase conversion of propane to acrylonitrile and isobutane to methacrylonitrile (via ammoxidation).
    Type: Application
    Filed: October 31, 2006
    Publication date: May 1, 2008
    Inventors: Claus Lugmair, Benjamin Mork, Jessica Zysk Fryer, Anthony F. Volpe, Joseph Peter Bartek, Hailian Li, Alakananda Bhattacharyya, James F. Brazdil, Bruce I. Rosen, Eric Moore
  • Publication number: 20080033218
    Abstract: This invention is directed to a process for making alcohol from syngas, and a process for making olefin, as well as polyolefin, from the alcohol. The syngas is converted to a mixed alcohol stream using a catalyst comprising at least one oxide component. Upon contacting the catalyst with a desired syngas composition, a preferred mixed alcohol product is formed. Preferably, the syngas composition has a stoichiometric molar ratio of less than 2.
    Type: Application
    Filed: June 20, 2007
    Publication date: February 7, 2008
    Inventors: James R. Lattner, Matthew James Vincent, Kun Wang, Michel Molinier, Michael J. Veraa, Anthony F. Volpe, Hailian Li, Jeffrey C. Yoder, Mark Muraoka
  • Patent number: 7220700
    Abstract: A selective hydrogenation catalyst composition comprises a support; a first metal component comprising rhodium; and a second metal component comprising a metal other than rhodium and selected from Groups 1 to 15 of the Periodic Table of Elements, wherein said first and second components are predominantly contained in an outer surface layer of the support having a depth of not more than 1000 microns.
    Type: Grant
    Filed: November 24, 2003
    Date of Patent: May 22, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: David M. Lowe, Michel Molinier, John D. Y. Ou, Michael A. Risch, Anthony F. Volpe, Jr., Jeffrey C. Yoder, Valery Sokolovskii
  • Patent number: 7220701
    Abstract: A selective hydrogenation catalyst composition comprises a rhodium component present in an amount such that the catalyst composition comprises less than 3.0% of rhodium by weight of the total catalyst composition; and an indium component present in an amount such that the catalyst composition comprises at least 0.3% and less than 5.0% of indium by weight of the total catalyst composition.
    Type: Grant
    Filed: November 24, 2003
    Date of Patent: May 22, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: David M. Lowe, Michel Molinier, John D. Y. Ou, Michael A. Risch, Anthony F. Volpe, Jr., Jeffrey C. Yoder
  • Patent number: 7111802
    Abstract: Methods and apparatus for combinatorial (i.e., high-throughput) materials research, such as catalysis research, that involves parallel apparatus for simultaneously effecting mechanical treatments such as grinding, mixing, pressing, crushing, sieving, and/or fractionating of such materials are disclosed. The methods and apparatus are useful for mechanically treating catalysis materials and other solid materials, including without limitation, electronic materials such as phosphors, colorants such as pigments, and pharmaceuticals such as crystalline drugs or drug candidates. The simultaneous protocols and parallel apparatus offer substantial improvements in overall throughput for preparing arrays of materials, such as catalysis materials.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: September 26, 2006
    Assignee: Symyx Technologies, Inc.
    Inventors: Claus G. Lugmair, Alfred Hagemeyer, Lynn Van Erden, Anthony F. Volpe, Jr., David M. Lowe, Yumin Liu
  • Patent number: 6971593
    Abstract: Methods and apparatus for combinatorial (i.e., high-throughput) materials research, such as catalysis research, that involves parallel apparatus for simultaneously effecting mechanical treatments such as grinding, mixing, pressing, crushing, sieving, and/or fractionating of such materials are disclosed. The methods and apparatus are useful for mechanically treating catalysis materials and other solid materials, including without limitation, electronic materials such as phosphors, colorants such as pigments, and pharmaceuticals such as crystalline drugs or drug candidates. The simultaneous protocols and parallel apparatus offer substantial improvements in overall throughput for preparing arrays of materials, such as catalysis materials.
    Type: Grant
    Filed: August 15, 2003
    Date of Patent: December 6, 2005
    Assignee: Symyx Technologies, Inc.
    Inventors: Claus Lugmair, Alfred Hagemeyer, Lynn Van Erden, Anthony F. Volpe, Jr., David M. Lowe, Yumin Liu
  • Publication number: 20040251334
    Abstract: Methods and apparatus for combinatorial (i.e., high-throughput) materials research, such as catalysis research, that involves parallel apparatus for simultaneously effecting mechanical treatments such as grinding, mixing, pressing, crushing, sieving, and/or fractionating of such materials are disclosed. The methods and apparatus are useful for mechanically treating catalysis materials and other solid materials, including without limitation, electronic materials such as phosphors, colorants such as pigments, and pharmaceuticals such as crystalline drugs or drug candidates. The simultaneous protocols and parallel apparatus offer substantial improvements in overall throughput for preparing arrays of materials, such as catalysis materials.
    Type: Application
    Filed: June 28, 2004
    Publication date: December 16, 2004
    Applicant: Symyx Technologies, Inc.
    Inventors: Claus Lugmair, Alfred Hagemeyer, Lynn Van Erden, Anthony F. Volpe, David M. Lowe, Yumin Liu
  • Patent number: 6755364
    Abstract: Methods and apparatus for combinatorial (i.e., high-throughput) materials research, such as catalysis research, that involves parallel apparatus for simultaneously effecting mechanical treatments such as grinding, mixing, pressing, crushing, sieving, and/or fractionating of such materials are disclosed. The methods and apparatus are useful for mechanically treating catalysis materials and other solid materials, including without limitation, electronic materials such as phosphors, colorants such as pigments, and pharmaceuticals such as crystalline drugs or drug candidates. The simultaneous protocols and parallel apparatus offer substantial improvements in overall throughput for preparing arrays of materials, such as catalysis materials.
    Type: Grant
    Filed: July 9, 2001
    Date of Patent: June 29, 2004
    Assignee: Symyx Technologies, Inc.
    Inventors: Claus Lugmair, Alfred Hagemeyer, Lynn Van Erden, Anthony F. Volpe, Jr., David M. Lowe, Yumin Liu
  • Publication number: 20040110636
    Abstract: Methods and apparatus for combinatorial (i.e., high-throughput) materials research, such as catalysis research, that involves parallel apparatus for simultaneously effecting mechanical treatments such as grinding, mixing, pressing, crushing, sieving, and/or fractionating of such materials are disclosed. The methods and apparatus are useful for mechanically treating catalysis materials and other solid materials, including without limitation, electronic materials such as phosphors, colorants such as pigments, and pharmaceuticals such as crystalline drugs or drug candidates. The simultaneous protocols and parallel apparatus offer substantial improvements in overall throughput for preparing arrays of materials, such as catalysis materials.
    Type: Application
    Filed: August 15, 2003
    Publication date: June 10, 2004
    Applicant: Symyx Technologies, Inc.
    Inventors: Claus Lugmair, Alfred Hagemeyer, Lynn Van Erden, Anthony F. Volpe, David M. Lowe, Yumin Liu
  • Publication number: 20020042140
    Abstract: Protocols for designing and implementing sets of simultaneous experiments, in a parallel, multi-variable process optimization reactor, are disclosed. The multi-variable process optimization reactor is preferably a parallel flow reactor having the operational capability to simultaneously vary reaction conditions between reaction vessels—either modularly or independently. The simultaneously varied reaction conditions preferably include at least two of the following, in various combinations and permutations: space velocity, contact time, temperature, pressure and feed composition. Compositional variations in the catalysts residing in each of the reaction vessels can also be investigated in the set of simultaneous experiments implemented in the parallel reactor. Sufficient data is obtained from a single set of simultaneous experiments to generate a master curve.
    Type: Application
    Filed: July 9, 2001
    Publication date: April 11, 2002
    Inventors: Alfred Hagemeyer, Anthony F. Volpe, Claus Lugmair, David M. Lowe, Yumin Liu, H. Sam Bergh, Shenheng Guan, Daniel M. Pinkas, Kyle W. Self, James R. Engstrom, Laurent Lefort
  • Publication number: 20020014546
    Abstract: Methods and apparatus for combinatorial (i.e., high-throughput) materials research, such as catalysis research, that involves parallel apparatus for simultaneously effecting mechanical treatments such as grinding, mixing, pressing, crushing, sieving, and/or fractionating of such materials are disclosed. The methods and apparatus are useful for mechanically treating catalysis materials and other solid materials, including without limitation, electronic materials such as phosphors, colorants such as pigments, and pharmaceuticals such as crystalline drugs or drug candidates. The simultaneous protocols and parallel apparatus offer substantial improvements in overall throughput for preparing arrays of materials, such as catalysis materials.
    Type: Application
    Filed: July 9, 2001
    Publication date: February 7, 2002
    Inventors: Claus Lugmair, Alfred Hagemeyer, Lynn Van Erden, Anthony F. Volpe, David M. Lowe, Yumin Liu