Patents by Inventor Anthony Go

Anthony Go has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11377402
    Abstract: Systems and methods are provided for integration of an aromatic formation process for converting non-aromatic hydrocarbon to an aromatic product and subsequent methylating of a portion of the aromatic product to produce a methylated product, with improvements in the aromatic formation process and/or the methylation process based on integrating portions of the secondary processing trains associated with the aromatic formation process and the methylation process. The aromatic formation process and methylation process can be used, for example, for integrated production of specialty aromatics or gasoline blending components.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: July 5, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Catherine M. Dorsi, Todd E. Detjen, Mayank Shekhar, Anthony Go
  • Publication number: 20220195309
    Abstract: Systems and methods are provided for integration of a reactor for polyolefin pyrolysis with the effluent processing train for a steam cracker. The polyolefins can correspond to, for example, polyolefins in plastic waste. Integrating a process for polyolefin pyrolysis with a steam cracker processing train can allow a mixture of polymers to be converted to monomer units while reducing or minimizing costs and/or equipment footprint. This can allow for direct conversion of polyolefins to the light olefin monomers in high yield while significantly lowering capital and energy usage due to integration with a steam cracking process train. The integration can be enabled in part by selecting feeds with appropriate mixtures of various polymer types and/or by limiting the volume of the plastic waste pyrolysis product relative to the volume from the steam cracker(s) in the steam cracking process train.
    Type: Application
    Filed: June 12, 2020
    Publication date: June 23, 2022
    Inventors: Sundararajan Uppili, Bryan A. Patel, Randolph J. Smiley, Lawrence R. Gros, Anthony Go, Saurabh S. Maduskar, Melissa D. Foster, Philippe Laurent
  • Patent number: 11053176
    Abstract: Disclosed is a process for producing mixed xylenes and C9+ hydrocarbons in which an aromatic hydrocarbon feedstock comprising benzene and/or toluene is contacted with an alkylating agent comprising methanol and/or dimethyl ether under alkylation conditions in the presence of an alkylation catalyst to produce an alkylated aromatic product stream comprising the mixed xylenes and C9+ hydrocarbons. The mixed xylenes are subsequently converted to para-xylene, and the C9+ hydrocarbons and its components may be supplied as motor fuels blending components. The alkylation catalyst comprises a molecular sieve having a Constraint Index in the range from greater than zero up to about 3. The molar ratio of aromatic hydrocarbon to alkylating agent is in the range of greater than 1:1 to less than 4:1.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: July 6, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Tan-Jen Chen, Wenyih F. Lai, Anthony Go
  • Publication number: 20210122688
    Abstract: Systems and methods are provided for integration of an aromatic formation process for converting non-aromatic hydrocarbon to an aromatic product and subsequent methylating of a portion of the aromatic product to produce a methylated product, with improvements in the aromatic formation process and/or the methylation process based on integrating portions of the secondary processing trains associated with the aromatic formation process and the methylation process. The aromatic formation process and methylation process can be used, for example, for integrated production of specialty aromatics or gasoline blending components.
    Type: Application
    Filed: April 19, 2018
    Publication date: April 29, 2021
    Inventors: Catherine M. Dorsi, Todd E. Detjen, Mayank Shekhar, Anthony Go
  • Publication number: 20210040016
    Abstract: Disclosed is a process for producing mixed xylenes and C9+ hydrocarbons in which an aromatic hydrocarbon feedstock comprising benzene and/or toluene is contacted with an alkylating agent comprising methanol and/or dimethyl ether under alkylation conditions in the presence of an alkylation catalyst to produce an alkylated aromatic product stream comprising the mixed xylenes and C9+ hydrocarbons. The mixed xylenes are subsequently converted to para-xylene, and the C9+ hydrocarbons and its components may be supplied as motor fuels blending components. The alkylation catalyst comprises a molecular sieve having a Constraint Index in the range from greater than zero up to about 3. The molar ratio of aromatic hydrocarbon to alkylating agent is in the range of greater than 1:1 to less than 4:1.
    Type: Application
    Filed: March 15, 2019
    Publication date: February 11, 2021
    Inventors: Tan-Jen Chen, Wenyih F. Lai, Anthony Go
  • Patent number: 10906851
    Abstract: Para-xylene is separated from a mixture of xylenes and ethylbenzene by a separation process. An ortho-selective adsorbent is used to reduce the ortho-xylene concentration of the xylenes, prior to contact of the xylenes and ethylbenzene with a para-selective adsorbent. The stream rich in ortho-xylene may be isomerized in the liquid phase to increase the amount of para-xylene therein. The para-xylene-depleted stream may be treated in the vapor phase to remove the ethylbenzene and then subjected to isomerization in the liquid phase to produce a stream having a higher than equilibrium amount of para-xylene.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: February 2, 2021
    Assignees: EXXONMOBIL CHEMICAL PATENTS INC., GEORGIA TECH RESEARCH CORPORATTON
    Inventors: Meha Rungta, Robert G. Tinger, Jeevan S. Abichandani, Dana L. Pilliod, John R. Porter, Anthony Go, Sankar Nair, Ke Zhang
  • Publication number: 20200181042
    Abstract: Para-xylene is separated from a mixture of xylenes and ethylbenzene by a separation process. An ortho-selective adsorbent is used to reduce the ortho-xylene concentration of the xylenes, prior to contact of the xylenes and ethylbenzene with a para-selective adsorbent. The stream rich in ortho-xylene may be isomerized in the liquid phase to increase the amount of para-xylene therein. The para-xylene-depleted stream may be treated in the vapor phase to remove the ethylbenzene and then subjected to isomerization in the liquid phase to produce a stream having a higher than equilibrium amount of para-xylene.
    Type: Application
    Filed: February 9, 2017
    Publication date: June 11, 2020
    Inventors: Meha RUNGTA, Robert G. TINGER, Jeevan S. ABICHANDANI, Dana L. PILLIOD, John R. PORTER, Anthony GO, Sankar NAIR, Ke ZHANG
  • Patent number: 10358401
    Abstract: Para-xylene is separated from a mixture of C8 aromatics using a simulated moving bed (SMB) adsorption process, wherein a MOF is used as an adsorbent and an alkane or alkene having 7 or less carbon atoms, such as hexane or heptane is used as desorbent. Because of the difference in boiling points of a hexane or heptane desorbent as compared to conventional desorbents such as toluene or para-diethylbenzene, less energy is required to separate hexane or heptane from C8 aromatics by distillation than the energy required to separate toluene or diethylbenzene from C8 aromatics by distillation.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: July 23, 2019
    Assignees: EXXONMOBIL CHEMICAL PATENTS INC., GEORGIA TECH RESEARCH CORPORATION
    Inventors: Meha Rungta, Jeevan S. Abichandani, Dana L. Pilliod, Robert G. Tinger, Anthony Go, Ke Zhang, Sankar Nair, Jason Gee, David Sholl
  • Publication number: 20190127294
    Abstract: The invention relates to catalysts and their use in processes for conversion of hydrocarbon feedstock to a product comprising single-ring aromatic hydrocarbons having six or more carbon atoms, to the methods of making such catalysts, to processes for using such catalysts, and to apparatus and systems for carrying out such processes. One of more of the catalysts comprise a crystalline aluminosilicate having a Constraint Index in the range of 1 to 12, a first metal and/or a second metal, and at least one selectivating agent, such as, for example, an organo-silicate.
    Type: Application
    Filed: December 21, 2018
    Publication date: May 2, 2019
    Inventors: Mayank Shekhar, Paul F. Keusenkothen, Machteld M. Mertens, Anthony Go
  • Patent number: 10202318
    Abstract: The invention relates to catalysts and their use in processes for conversion of hydrocarbon feedstock to a product comprising single-ring aromatic hydrocarbons having six or more carbon atoms, to the methods of making such catalysts, to processes for using such catalysts, and to apparatus and systems for carrying out such processes. One of more of the catalysts comprise a crystalline aluminosilicate having a Constraint Index in the range of 1 to 12, a first metal and/or a second metal, and at least one selectivating agent, such as, for example, an organo-silicate.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: February 12, 2019
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Mayank Shekhar, Paul F. Keusenkothen, Machteld M. W. Mertens, Anthony Go
  • Publication number: 20180215684
    Abstract: Para-xylene is separated from a mixture of C8 aromatics using a simulated moving bed (SMB) adsorption process, wherein a MOF is used as an adsorbent and an alkane or alkene having 7 or less carbon atoms, such as hexane or heptane is used as desorbent. Because of the difference in boiling points of a hexane or heptane desorbent as compared to conventional desorbents such as toluene or para-diethylbenzene, less energy is required to separate hexane or heptane from C8 aromatics by distillation than the energy required to separate toluene or diethylbenzene from C8 aromatics by distillation.
    Type: Application
    Filed: July 29, 2016
    Publication date: August 2, 2018
    Inventors: Meha RUNGTA, Jeevan S. ABICHANDANI, Dana L. PILLIOD, Robert G. TINGER, Anthony GO, Ke ZHANG, Sankar NAIR, Jason GEE, David SHOLL
  • Publication number: 20170088485
    Abstract: The invention relates to catalysts and their use in processes for conversion of hydrocarbon feedstock to a product comprising single-ring aromatic hydrocarbons having six or more carbon atoms, to the methods of making such catalysts, to processes for using such catalysts, and to apparatus and systems for carrying out such processes. One of more of the catalysts comprise a crystalline aluminosilicate having a Constraint Index in the range of 1 to 12, a first metal and/or a second metal, and at least one selectivating agent, such as, for example, an organo-silicate.
    Type: Application
    Filed: August 18, 2016
    Publication date: March 30, 2017
    Inventors: Mayank Shekyar, Paul F. Keusenkothen, Machteld M.W. Mertens, Anthony Go
  • Publication number: 20130331633
    Abstract: A process for separating a product from a multicomponent feedstream to an adsorption apparatus or system. The apparatus or system may comprise a moving-bed or a simulated moving-bed adsorption means. The product comprises at least one organic compound, such as an aryl compound with alkyl substitutes. In embodiments the conduits used to supply the feedstream to the apparatus or system are flushed with media of multiple grades. In embodiments the process achieves improvements in one or more of efficiency of adsorption separation, capacity of adsorption apparatus systems, and purity of product attainable by adsorption process.
    Type: Application
    Filed: August 12, 2013
    Publication date: December 12, 2013
    Inventors: Anthony Go, Dana L. Pilliod, John R. Porter
  • Patent number: 8529757
    Abstract: A process for separating a product from a multicomponent feedstream to an adsorption apparatus or system. The apparatus or system may comprise a moving-bed or a simulated moving-bed adsorption means. The product comprises at least one organic compound, such as an aryl compound with alkyl substitutes. In embodiments the conduits used to supply the feedstream to the apparatus or system are flushed with media of multiple grades. In embodiments the process achieves improvements in one or more of efficiency of adsorption separation, capacity of adsorption apparatus systems, and purity of product attainable by adsorption process.
    Type: Grant
    Filed: May 5, 2010
    Date of Patent: September 10, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Anthony Go, Dana Lynn Pilliod, John R. Porter
  • Publication number: 20130144097
    Abstract: In a process for producing para-xylene, a naphtha feed is reformed under conditions effective to convert at least 50 wt % of the naphthenes in the naphtha feed to aromatics, but to convert no more than 25 wt % of the paraffins in the naphtha feed, and thereby produce a reforming effluent. A first stream containing benzene and/or toluene is removed from the reforming effluent and is fed to a xylene production unit under conditions effective to convert benzene and/or toluene to xylenes. In addition, a second stream containing C8 aromatics is removed from the reforming effluent and is fed, together with at least part of the xylenes produced in the xylene production unit, to a para-xylene recovery unit to recover a para-xylene product stream and leave a para-xylene-depleted C8 stream.
    Type: Application
    Filed: November 14, 2012
    Publication date: June 6, 2013
    Applicant: ExxonMobil Chemical Patents Inc.
    Inventors: Timothy P. Bender, John W. Rebeck, Rimas V. Vebeliunas, John R. Porter, Anthony Go, Larry L. Iaccino, Glenn C. Wood
  • Publication number: 20100305381
    Abstract: A process for separating a product from a multicomponent feedstream to an adsorption apparatus or system. The apparatus or system may comprise a moving-bed or a simulated moving-bed adsorption means. The product comprises at least one organic compound, such as an aryl compound with alkyl substitutes. In embodiments the conduits used to supply the feedstream to the apparatus or system are flushed with media of multiple grades. In embodiments the process achieves improvements in one or more of efficiency of adsorption separation, capacity of adsorption apparatus systems, and purity of product attainable by adsorption process.
    Type: Application
    Filed: May 5, 2010
    Publication date: December 2, 2010
    Inventors: Anthony Go, Dana Lynn Pilliod, John R. Porter
  • Patent number: 6602404
    Abstract: A process comprises separating a naphtha feed into a fraction comprising C7− hydrocarbons and a heavy C8+ fraction, separating the C8+ fraction into a light fraction comprising C8 and/or C8-C9 which then is reformed to produce gasoline and/or a desired distribution of aromatics.
    Type: Grant
    Filed: July 30, 2001
    Date of Patent: August 5, 2003
    Assignee: Exxon Mobil Chemical Patents Inc.
    Inventors: John Francis Walsh, Anthony Go, Duane Robert McGregor, John William Rebeck, Leonel Eduardo Sanchez
  • Publication number: 20020056663
    Abstract: A process comprises separating a naphtha feed into a fraction comprising C731 hydrocarbons and a heavy C8+ fraction, separating the C8+ fraction into a light fraction comprising C8 and/or C8-C9 which then is reformed to produce gasoline and/or a desired distribution of aromatics.
    Type: Application
    Filed: July 30, 2001
    Publication date: May 16, 2002
    Inventors: John Francis Walsh, Anthony Go, Duane Robert McGregor, John William Rebeck, Leonel Eduardo Sanchez