Patents by Inventor Anthony H. Heap

Anthony H. Heap has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9002559
    Abstract: A method for operating a powertrain system to transfer torque among an engine, torque machines, and a driveline in response to an output torque request includes executing a selection scheme to evaluate operating in a plurality of candidate powertrain states including a pseudo-electric vehicle (EV) range responsive to the output torque request. A respective minimum cost for operating the powertrain system in each of the candidate powertrain states including the pseudo-EV range is determined. A preferred powertrain state is selected, and is one of the candidate powertrain states including the pseudo-EV range associated with a minimum of the respective minimum costs. The powertrain system is controlled in the preferred powertrain state responsive to the output torque request.
    Type: Grant
    Filed: April 11, 2013
    Date of Patent: April 7, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Anthony H. Heap, Kee Yong Kim, Ryan D. Martini
  • Patent number: 8996215
    Abstract: A vehicle includes a torque generating device, a transmission, and a controller. The transmission has one or more clutches. The controller executes a method, which includes measuring an amount of slip across an identified offgoing clutches and determining whether the offgoing clutches have slipped prior to a modeled clutch torque capacity reaching zero. A status is assigned indicating that the offgoing clutches are released if the offgoing clutch has slipped prior to the modeled clutch capacity reaching zero. The controller induces slip across the identified offgoing clutches to a calibrated low, non-zero level after recording the value, including by enforcing the low, non-zero slip value using one or more acceleration profiles.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: March 31, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Pinaki Gupta, Lawrence A. Kaminsky, Sean W. McGrogan, Anthony H. Heap
  • Patent number: 8989940
    Abstract: A powertrain system is configured to transfer torque to an output member. A method for controlling the powertrain system includes prioritizing a plurality of system torque constraint parameters. The system torque constraint parameters are sequentially applied in an order of descending priority. A feasible state for each of the sequentially applied system torque constraint parameters is determined. A solution set including the feasible states for all the sequentially applied system torque constraint parameters is determined, and employed to control operation of the powertrain system in response to an output torque request.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: March 24, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Anthony H. Heap, Sean W. McGrogan
  • Patent number: 8989930
    Abstract: A powertrain system includes an internal combustion engine configured to transfer torque via a clutch to an input member of a hybrid transmission having torque machines configured to transfer torque thereto. Operation of the engine is controlled to facilitate a change in activation of a clutch between the engine and the input member of the hybrid transmission.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: March 24, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Jy-Jen F. Sah, Anthony H. Heap, Lawrence A. Kaminsky
  • Publication number: 20150081148
    Abstract: A powertrain system is configured to transfer torque to an output member. A method for controlling the powertrain system includes prioritizing a plurality of system torque constraint parameters. The system torque constraint parameters are sequentially applied in an order of descending priority. A feasible state for each of the sequentially applied system torque constraint parameters is determined. A solution set including the feasible states for all the sequentially applied system torque constraint parameters is determined, and employed to control operation of the powertrain system in response to an output torque request.
    Type: Application
    Filed: September 19, 2013
    Publication date: March 19, 2015
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: ANTHONY H. HEAP, SEAN W. MCGROGAN
  • Patent number: 8983692
    Abstract: A method to control a hybrid powertrain including an engine, an electric machine, and a transmission through a transition from an initial operating point to a target operating point includes monitoring a break point in a non-convex data set defined by an engine torque below which a growl condition cannot occur and a threshold low motor torque required for the grown condition, comparing the target operating point to the break point, and controlling the powertrain based upon the target operating point and the comparing.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: March 17, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Anthony H. Heap, Jeremy Wise, Sean W. McGrogan
  • Publication number: 20150051046
    Abstract: A vehicle includes an internal combustion engine coupled to an input member of a multi-mode transmission configured to transfer torque to an output member coupled to a ground wheel with the internal combustion engine in an ON state generating an input torque. A method for controlling the vehicle includes identifying an undesirable operating region including an input/output torque region for operating the multi-mode transmission. In response to an operator request for creep torque, motor torque is controlled from a torque machine coupled to the multi-mode transmission such that the multi-mode transmission is operating outside the undesirable operating region while a mechanical braking torque to the ground wheel is coincidentally controlled in response to an operator-commanded braking, the input torque from the engine, and the motor torque from the torque machine.
    Type: Application
    Filed: August 15, 2013
    Publication date: February 19, 2015
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: JEREMY WISE, JY-JEN F. SAH, ANTHONY H. HEAP
  • Publication number: 20150051048
    Abstract: A powertrain system includes an engine coupled to a multi-mode transmission configured to transfer tractive torque to an output member coupled to a ground wheel. A method for operating the powertrain system includes identifying an undesirable operating region for the multi-mode transmission associated with driveline growl including an input torque range and an output torque range. In response to a command to traverse the undesirable operating region from a first operating region to a second operating region, a fast engine torque transition is executed including controlling the engine as a fast-adjusting torque actuator to control input torque from the engine to the multi-mode transmission and correspondingly controlling motor torque from a torque machine to the multi-mode transmission to maintain output torque from the multi-mode transmission responsive to an output torque request while traversing the undesirable operating region from the first operating region to the second operating region.
    Type: Application
    Filed: August 15, 2013
    Publication date: February 19, 2015
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: ANTHONY H. HEAP, SEAN W. MCGROGAN
  • Patent number: 8956263
    Abstract: A method for controlling a powertrain system including an internal combustion engine coupled to a multi-mode transmission in response to a command to execute a shift from a first EVT Mode range to a second EVT Mode range includes executing a first shift from the first EVT Mode range to an intermediate transmission range. The multi-mode transmission operates in the intermediate transmission range and the engine is controlled at an engine torque command that corresponds to an output torque request. A second shift is executed from the intermediate transmission range to the second transmission range. The powertrain system operates in the second transmission range to transfer torque to an output member of the transmission.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: February 17, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Anthony H. Heap, Sean W. McGrogan, Krunal P. Patel
  • Patent number: 8948942
    Abstract: A method to control an output torque of a powertrain in response to an incipient transient speed event within the powertrain includes determining an incipient transient speed event, determining a maximum output torque capability profile based upon the incipient transient speed event, determining a minimum value of the maximum output torque capability profile, and limiting the output torque to not greater than the minimum value of the maximum output torque capability profile until the incipient transient speed event is concluded.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: February 3, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Sean W. McGrogan, Anthony H. Heap
  • Publication number: 20150032308
    Abstract: A method for selecting an engine operating point in a multi-mode powertrain system includes monitoring a desired axle torque based on an operator torque request and vehicle speed. For each available combustion mode of the diesel engine, engine torque and speed ranges are received and a plurality of fuel losses and a plurality of emissions losses are retrieved, each fuel and emissions loss corresponding to respective ones of a plurality of engine operating points within the engine torque and speed ranges. The respective fuel and emissions losses are compared at each of a plurality of potential engine operating points within the engine torque and speed ranges of the available combustion modes. A desired engine operating point within one of the available combustion modes is selected that corresponds to one of the potential engine operating points having a lowest power loss based on the compared respective fuel and emissions losses.
    Type: Application
    Filed: July 25, 2013
    Publication date: January 29, 2015
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: CHRISTOPHER E. WHITNEY, LUCA SCAVONE, ANTHONY H. HEAP, CORNELIUS HEISLER
  • Patent number: 8935027
    Abstract: A multi-mode vehicular powertrain system includes an internal combustion engine fluidly coupled to an exhaust aftertreatment system including a catalytic device and an electric machine electrically coupled to a battery. A method for effecting light-off of the catalytic device includes monitoring an output torque request for the powertrain system and determining a preferred engine operating point having a minimum engine operating cost within a predetermined engine operating region for catalyst light-off. When a state-of-charge of the battery is not approaching a predetermined state-of-charge limit, operation of the engine is controlled to the preferred engine operating point and operation of the electric machine is controlled to a machine operating point wherein the combination of engine torque at the preferred engine operating point and electric machine torque at the machine operating point satisfies the output torque request.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: January 13, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Anthony H. Heap, Kee Yong Kim
  • Patent number: 8924108
    Abstract: A method of managing available operating states in an electrified powertrain includes: identifying a plurality of operating states; determining an allowable hardware operating speed range for each of the plurality of operating states; determining a real operating speed range for each of the plurality of operating states; determining an ideal operating speed range for each of the plurality of operating states, the ideal operating speed range being a subset of the allowable real operating speed range; indicating an operating state of the plurality of operating states as ideal-allowed if an actual output speed of the electrified powertrain is within the ideal operating speed range for that operating state; and commanding the electrified powertrain to operate within one of the operating states that is indicated as ideal-allowed.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: December 30, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Anthony H. Heap, Kee Yong Kim, Samantha Victoria Lado, John Janczak
  • Publication number: 20140378275
    Abstract: A multi-mode transmission is configured to transfer torque among an internal combustion engine, torque machines and an output member. A method for controlling shifting in the transmission includes, in response to a command to execute a range shift in the transmission to a target transmission range: applying mechanical braking torque to reduce output torque from the transmission to off-load torque from an off-going clutch, operating in a pseudo-gear range to synchronize an oncoming clutch, and applying the oncoming clutch to establish the transmission in the target range.
    Type: Application
    Filed: June 24, 2013
    Publication date: December 25, 2014
    Applicant: GM Global Technology Operations LLC
    Inventors: ANTHONY H. HEAP, SEAN W. MCGROGAN, KRUNAL P. PATEL
  • Publication number: 20140349807
    Abstract: A multi-mode powertrain system includes a transmission configured to transfer torque among an internal combustion engine, torque machines and an output member. A method for controlling the powertrain system includes operating the multi-mode powertrain system to execute an engine intake manifold pump down mode, and aborting the engine intake manifold pump down mode and fueling the engine, wherein aborting is based upon intake manifold pressure and system constraints.
    Type: Application
    Filed: May 23, 2013
    Publication date: November 27, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: ANTHONY H. HEAP, WILFRIED BRUNSSEN, POH FONG CHIN
  • Patent number: 8897975
    Abstract: A method for controlling a powertrain system includes monitoring an operator torque request, selecting a candidate powertrain system operating point, and determining a preferred engine torque range, a preferred torque machine torque range, and a preferred energy storage device output power range. The method further includes determining an engine torque, a torque machine torque, and an energy storage device output power based upon the operator torque request and the candidate powertrain system operating point. Power costs for operating the powertrain at the candidate powertrain system operating point are determined based on the determined engine torque, the determined torque machine torque, and the determined energy storage device output power range. Penalty costs are determined relative to the preferred engine torque range, the preferred torque machine torque range, and the preferred energy storage device output power range for operating the powertrain at the candidate powertrain system operating point.
    Type: Grant
    Filed: September 23, 2008
    Date of Patent: November 25, 2014
    Assignees: GM Global Technology Operations LLC, Daimler AG, Chrysler Group LLC, Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, Kee Yong Kim
  • Patent number: 8893483
    Abstract: A multi-mode powertrain system employing a power-split configuration to transfer torque to a driveline includes an internal combustion engine fluidly coupled to an exhaust aftertreatment system having a catalytic device. A method for controlling the multi-mode powertrain system includes identifying permitted transition paths between a plurality of engine states. The plurality of engine states includes a default state, a pre-light-off state, a light-off state, and a post-light-off state. A preferred one of the plurality of engine states is selected in response to an output torque request and an operating temperature of the catalytic device. Engine operation is transitioned to the preferred one of the plurality of engine states via the permitted transition paths, and the engine is operated in the preferred one of the plurality of engine states.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: November 25, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Anthony H. Heap, Kee Yong Kim, Yaoyao Wei, Alexander K. Rustoni
  • Patent number: 8892285
    Abstract: A method for operating a powertrain system includes determining an objective function for an object component of interest of the powertrain system. Constraints are determined for a plurality of independent variables and dependent variables. Permutations of the objective function are evaluated with reference to the independent variables and the dependent variables. The objective function is evaluated to determine maximum and minimum values for the objective function for each of the permutations. Overall minimum and maximum values for the objective function are determined based upon the maximum and minimum values for the objective function for each of the permutations. Operation of the powertrain system associated with the object component of interest is controlled based upon the overall minimum and maximum values for the objective function.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: November 18, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Michael Glenn Diaz, Anthony H. Heap
  • Patent number: 8892317
    Abstract: A multi-mode powertrain system includes a transmission configured to transfer torque among an internal combustion engine, torque machines and an output member. A method for controlling the powertrain system includes determining a desired acceleration profile for the internal combustion engine, determining a constrained acceleration profile by imposing prioritized constraints on the desired acceleration profile, integrating the constrained acceleration profile to determine a preferred speed profile, determining a preferred acceleration profile including a derivative of the preferred speed profile constrained by minimum and maximum hard acceleration constraints, and controlling operation of the internal combustion engine in response to the preferred acceleration profile and the preferred speed profile.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: November 18, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Sean W. McGrogan, Anthony H. Heap, Lawrence A. Kaminsky
  • Patent number: 8892283
    Abstract: A method for controlling a powertrain system includes determining minimum and maximum states for an object component of interest based upon a plurality of linear constraints that are associated with operating parameters for the torque machines and the multi-mode transmission. Minimum and maximum objective battery powers are determined based upon the minimum and maximum states for the object component of interest. When the minimum and maximum objective battery powers are outside the minimum and maximum battery power limits, a problem recomposition process is executed to recompose the minimum and maximum battery power limits and the linear constraints. Recomposed minimum and maximum states for the object component of interest are determined based upon the recomposed minimum and maximum battery power limits and the recomposed linear constraints. The recomposed minimum and maximum states for the object component of interest are employed to control the powertrain system.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: November 18, 2014
    Assignee: GM Global Technology Opeations LLC
    Inventors: Michael Glenn Diaz, Sean W. McGrogan, Anthony H. Heap